1(a)(i	MLT ⁻²	B1	Allow kg m s ⁻²
)		1	
(ii)	(T) = $(MLT^{-2})^{\alpha} (L)^{\beta} (ML^{-1})^{\gamma}$ Powers of M: $\alpha + \gamma = 0$	B1 M1	For ML ⁻¹
	of L: $\alpha + \beta - \gamma = 0$ of T: $-2\alpha = 1$	M2	For three equations Give M1 for one equation
	$\alpha = -\frac{1}{2}, \beta = 1, \gamma = \frac{1}{2}$	A2 6	Give A1 for one correct
(iii)	$kF_1^{\ \alpha}l_1^{\ \beta}\sigma^{\gamma} = kF_2^{\ \alpha}l_2^{\ \beta}\sigma^{\gamma}$	M1	
	$F_1^{-\frac{1}{2}} l_1 = F_2^{-\frac{1}{2}} l_2$	A1	Equation relating F_1 , F_2 , l_1 , l_2
	OR $F^{\alpha}l^{\beta}$ is constant M1 <i>F</i> is proportional to l^2 A1		or equivalent
	$F_2 = 90 \times \frac{2.0^2}{1.2^2}$ = 250 (N)	M1 A1 4	
(b)(i)	$\frac{2\pi}{\omega} = 0.01$ $\omega = 200\pi$	B1	
	Maximum speed is $A\omega = 0.018 \times 200\pi$ = 11.3 (m s ⁻¹)	M1 A1 3	Accept 3.6π
(ii)	Using $v^2 = \omega^2 (A^2 - x^2)$ $8^2 = (200\pi)^2 (0.018^2 - x^2)$ x = 0.0127 (m)	M1 M1 A1 A1	Substituting values
	OR $v = 3.6\pi \cos(200\pi t) = 8$ M1 when $200\pi t = 0.785$ A1 $(t = 0.001249)$ $x = 0.018 \sin(200\pi t) = 0.018 \sin(0.785)$ M1 $= 0.0127$ A1		<i>Condone the use of degrees in this part</i>

$\omega = \frac{2\pi}{2.4 \times 10^6} (= 2.618 \times 10^{-6})$	B1	or $v = \frac{2\pi \times 3.8 \times 10^8}{2.4 \times 10^6}$ (=994.8)
Acceleration $a = r\omega^2$ (or $\frac{v^2}{r}$) = 2.604 × 10 ⁻³	M1	
Force is $ma = 7.5 \times 10^{22} \times 2.604 \times 10^{-3}$ = 1.95×10^{20} (N)	M1 A1 4	M0 for $F - mg = ma$ etc Accept 1.9×10^{20} or 2.0×10^{20}
Change in PE is $mg(3.5 - 4\sin\theta)$ By conservation of energy	B1	or as separate terms
$\frac{1}{2}mv^2 = mg(3.5 - 4\sin\theta)$ $v^2 = 68.6 - 78.4\sin\theta$	M1 A1 3	Accept $7g - 8g \sin \theta$
$0.2 \times 9.8 \sin \theta - R = 0.2 \times \frac{v^2}{4}$	M1	Radial equation of motion (3 terms)
$1.96\sin\theta - R = 0.05(68.6 - 78.4\sin\theta)$ $R = 5.88\sin\theta - 3.43$	M1 A1 E1	Substituting from part (i)
	4	Correctly obtained
When $\theta = 40^{\circ}$, $v^2 = 18.21$	M1	or $0.2g\sin 40 - R = ma$
Radial acceleration is $\frac{v^2}{4} = 4.55 \text{ (m s}^{-2}\text{)}$	A1	Accept 4.5 or 4.6
Tangential acceleration is $9.8\cos 40$	M1	M0 for $a = mg \cos 40$ etc
$= 7.51 (ms^{-1})$	A1 4	
Leaves surface when $R = 0$	M1	
$\sin \theta = \frac{3.43}{5.88}$ $\theta = 35.7^{\circ}$	M1 A1 cao	Accept 36°, 0.62 rad
	$\omega = \frac{2\pi}{2.4 \times 10^6} (= 2.618 \times 10^{-6})$ Acceleration $a = r\omega^2 (\text{ or } \frac{v^2}{r})$ $= 2.604 \times 10^{-3}$ Force is $ma = 7.5 \times 10^{22} \times 2.604 \times 10^{-3}$ $= 1.95 \times 10^{20} \text{ (N)}$ Change in PE is $mg(3.5 - 4\sin\theta)$ By conservation of energy $\frac{1}{2}mv^2 = mg(3.5 - 4\sin\theta)$ $v^2 = 68.6 - 78.4\sin\theta$ $0.2 \times 9.8\sin\theta - R = 0.2 \times \frac{v^2}{4}$ $1.96\sin\theta - R = 0.05(68.6 - 78.4\sin\theta)$ $R = 5.88\sin\theta - 3.43$ When $\theta = 40^\circ$, $v^2 = 18.21$ Radial acceleration is $\frac{v^2}{4} = 4.55 \text{ (m s}^{-2})$ Tangential acceleration is 9.8cos 40 $= 7.51 \text{ (m s}^{-2})$ Leaves surface when $R = 0$ $\sin \theta = \frac{3.43}{5.88}$ $\theta = 35.7^\circ$	$\begin{split} & \omega = \frac{2\pi}{2.4 \times 10^6} (= 2.618 \times 10^{-6}) \\ & \text{Acceleration } a = r\omega^2 (\text{ or } \frac{v^2}{r}) \\ & = 2.604 \times 10^{-3} \\ & \text{Force is } ma = 7.5 \times 10^{22} \times 2.604 \times 10^{-3} \\ & = 1.95 \times 10^{20} \text{ (N)} \\ & \text{M1} \\ & \text{A1} \\ & \text{A2} \\ & \text{A2} \\ & \text{Change in PE is } mg(3.5 - 4\sin\theta) \\ & \text{B1} \\ & \text{B2 conservation of energy} \\ & \frac{1}{2}mv^2 = mg(3.5 - 4\sin\theta) \\ & w^2 = 68.6 - 78.4\sin\theta \\ & w^2 = 4.55 \text{ (ms^{-2})} \\ & w^2 = 4.55 \text{ (ms^{-2}$

3 (i)	$\frac{\lambda}{2} \times 0.8 = 12 \times 9.8$		
	15 $\lambda = 2205 \text{ (N)}$	M1	
		EI 2	
(ii)	$\frac{2205}{15} \times 5 - 12 \times 9.8 = 12a$	M1 A1	Equation of motion including tension
	$a = 51.45 \text{ (m s}^{-2}\text{)}$	A1 3	Accept 51 or 52
(iii)	Loss of EE is $\frac{1}{2} \times \frac{2205}{15} \times 5^2$ (=1837.5)	M1 A1	Calculating elastic energy
	By conservation of energy $12 \times 9.8 \times h = 1837.5$ h = 15.625	M1 F1	Equation involving EE and PE
	OA = 20 - h = 4.375 (m)	A1 5	
	OR $12 \times 9.8 \times 5 + \frac{1}{2} \times 12 \times v^2 = 1837.5$ M1 $v^2 = 208.25$		Equation involving EE, PE and KE
	$0 = 208.25 - 2 \times 9.8 \times H$ F1 H = 10.625		
	OA = 15 - H = 4.375 (m) A1		
(iv)	$T = \frac{2205}{15}(0.8 + x)$	B1	or $T = \frac{\lambda}{l}(x_0 + x)$
	$12 \times 9.8 - \frac{2205}{15}(0.8 + x) = 12\frac{d^2x}{dt^2}$	M1	terms $\lambda^{\lambda}(x + x) = x d^2 x$
	$\frac{d^2x}{d^2x} = -12.25x$		provided that $mg = \frac{\lambda}{l} x_0$ appears
	dt^2	E1 4	somewhere Correctly obtained
			No marks for just writing $-\frac{2205}{15}x = 12\frac{d^2x}{dt^2} \text{ or just using}$
			the formula $\omega^2 = \frac{1}{ml}$ If x is clearly measured upwards, treat as a mis-read
(v)	$x = 4.2\cos(3.5t)$	M1 A1	For $\cos(\sqrt{12.25} t)$ or $\sin(\sqrt{12.25} t)$
	Rope becomes slack when $x = -0.8$ 4.2 cos(3.5t) = -0.8 t = 0.504 (s)	M1	Accept 0.50 or 0.51
		4	1

4 (i)	$\int y dx = \int_0^2 (4 - x^2) dx = \left[4x - \frac{1}{3}x^3 \right]_0^2 (=\frac{16}{3})$	B1	
	$\int xy dx = \int_0^2 x(4-x^2) dx$ $= \left[2x^2 - \frac{1}{2}x^4 \right]_0^2 (=4)$	M1	
	$\overline{x} = \frac{4}{16}$	A1	
	= 0.75	M1	
		E1	Correctly obtained
	$\int \frac{1}{2} y^2 dx = \int_0^2 \frac{1}{2} (16 - 8x^2 + x^4) dx$	M1	
	$= \left[8x - \frac{4}{3}x^3 + \frac{1}{10}x^5\right]_0^2 (=\frac{128}{15})$	A1	
	$OR \int yx dy = \int_0^4 y \sqrt{4 - y} dy$		
	М1 Г 3 5 7 ⁴		Valid method of integration
	$= \left[-\frac{2}{3} y(4-y)^{\frac{1}{2}} - \frac{4}{15}(4-y)^{\frac{1}{2}} \right]_{0} $ A1		Or $\left[-\frac{8}{3}(4-y)^{\frac{3}{2}} + \frac{2}{5}(4-y)^{\frac{5}{2}} \right]_{0}^{1}$
	$\overline{y} = \frac{\frac{128}{15}}{\frac{16}{3}}$	M1	
	= 1.6	E1	Correctly obtained
		9	SR If $\frac{1}{2}$ is omitted, marks for \overline{y} areM1A0M0E0
(ii)	$\overline{x} = \frac{12 \times 0 + 6.5 \times 0.75 + 6.5 \times 2.75}{12 + 6.5 + 6.5}$	M1 M1	For $6.5 \times 0.75 + 6.5 \times 2.75$ Using $(\sum m)\overline{x} = \sum mx$
	$=\frac{22.75}{25}=0.91$	Λ1	
	$12 \times 0 + 65 \times 1.6 + 65 \times 1.6$	AI	
	$\overline{y} = \frac{12.86 + 6.6 \times 116 + 6.6 \times 116}{25}$	M1	Using $(\sum m)\overline{y} = \sum my$
	$=\frac{2000}{25}=0.832$	A1	
		5	
(iii)		M1 M1	For CM vertically below A For trig in a triangle containing
	$\tan \theta = \frac{2 - 0.91}{4 - 0.832} (= \frac{1.09}{3.168})$	A1	θ , or finding the gradient of AG Correct expression for $\tan \theta$ or $\tan(90 - \theta)$
	$\theta = 19.0^{\circ}$	A1 4	Accept 0.33 rad

1(a)(i)	$[Force] = MLT^{-2}$	B1		or [Energy]= $M L^2 T^{-2}$
	$[Power] = [Force] \times [Distance] \div [Time]$			
	= [Force] $\times LT^{-1}$	M1		or [Energy] $\times T^{-1}$
	$=ML^2T^{-3}$	A1		
			3	
(ii)	$[RHS] = \frac{(L)^3 (LT^{-1})^2 (ML^{-3})}{(ML^{-3})}$	B1B1		For $(LT^{-1})^2$ and (ML^{-3})
	$ML^2 T^{-3}$	M1		Simplifying dimensions of RHS
	= T	A1		
	[LHS] = L so equation is not consistent	E1		With all working correct (cao)
			5	SR ' L = $\frac{28}{9}\pi$ T, so inconsistent '
				can earn B1B1M1A1E0
(iii)	[RHS] needs to be multiplied by T^{-1}			
(,	which are the dimensions of u			
	$\frac{28\pi r^3 u^3}{r^3} c$			
	Correct formula is $x = \frac{26\pi T - \mu - \rho}{\rho P}$	A1 cao		RHS must appear correctly
			3	
	OR $x = k r^{\alpha} u^{\beta} \rho^{\gamma} P^{\delta}$			
	M1			Equating powers of one
	$\beta = 3$ A1			dimension
	$28\pi r^3 u^3 \rho$			
	$x = \frac{9P}{9P}$			
(b)(i)	Elastic energy is $\frac{1}{2} \times 150 \times 0.8^2$	M1		
	=48 J	Δ1		Treat use of modulus
		/ \ 1	2	$\lambda = 150 \text{ N}$ as MR
(ii)	In extreme position.			
	length of string is $2\sqrt{1.2^2 + 0.9^2}$ (= 3)	B1		for $\sqrt{1.2^2 + 0.9^2}$ or 1.5 or 3
	elastic energy is $\frac{1}{2} \times 150 \times 1.4^2$ (=147)	М1		allow M1 for $(2 \times) \frac{1}{2} \times 150 \times 0.7^2$
	By conservation of energy.			Equation involving EE and KE
	$147 - 48 = \frac{1}{2} \times m \times 10^2$	M1 Δ1		
	Mass is 1.98 kg			
		A1	F	
			C	

2 (a)(i)	Vertically, $T \cos 55^\circ = 0.6 \times 9.8$ Tension is 10.25 N		M1 A1	2	
(ii)	Radius of circle is $r = 2.8 \sin 55^\circ$ (= 2.294)		B1		
	Towards centre, $T \sin 55^\circ = 0.6 \times \frac{v^2}{2.8 \sin 55^\circ}$		M2		Give M1 for one error
	OR $T \sin 55^\circ = 0.6 \times (2.8 \sin 55^\circ) \times \omega^2$ $\omega = 2.47$ $v = (2.8 \sin 55^\circ) \omega$	M1 M1			or $T = 0.6 \times 2.8 \times \omega^2$ Dependent on previous M1
	Speed is 5.67 m s^{-1}		A1	4	
(b)(i)	Tangential acceleration is $r \alpha = 1.4 \times 1.12$ $F_1 = 0.5 \times 1.4 \times 1.12$ = 0.784 N		M1		
	Radial acceleration is $r \omega^2 = 1.4 \omega^2$ $F_2 = 0.5 \times 1.4 \omega^2$		M1		
	$= 0.7 \omega^2 N$		A1	4	SR $F_1 = -0.784$, $F_2 = -0.7\omega^2$ penalise once only
(ii)	Friction $F = \sqrt{F_1^2 + F_2^2}$ Normal reaction $R = 0.5 \times 9.8$		M1		
	About to slip when $F = \mu \times 0.5 \times 9.8$ $\sqrt{0.784^2 + 0.49\omega^4} = 0.65 \times 0.5 \times 9.8$		M1 A1 A1		For LHS and RHS Both dependent on M1M1
	<i>ω</i> = 2.1		A1 cao	5	
(iii)	$\tan \theta = \frac{F_1}{F_2}$		M1		Allow M1 for $\tan \theta = \frac{F_2}{F_1}$ etc
	$=\frac{0.764}{0.7 \times 2.1^2}$		A1		
	Angle is 14.25°		A1	3	Accept 0.249 rad

3 (i)	$T_{\rm AP} = \frac{1323}{3} \times 2 \ (= 882)$	B1	
	$T_{\rm BP} = \frac{1323}{4.5} \times 2.5 (=735)$	B1	
	$T_{AB} - mg - T_{BB} = 882 - 15 \times 9.8 - 735 = 0$		
	so P is in equilibrium		
		3	
	OR $\frac{1323}{3}(AP-3) = \frac{1323}{4.5}(BP-4.5) + 15 \times 9.8$ B2		Give B1 for one tension correct
	AP + BP = 12 and solving, $AP = 5$ E1		
(ii)	Extension of AP is $5 - x - 3 = 2 - x$		
	$T_{\rm AP} = \frac{1323}{3}(2-x) = 441(2-x)$	E1	
	Extension of BP is $7 + x - 4.5 = 2.5 + x$	B1	
	$T_{\rm BP} = \frac{1323}{4.5}(2.5+x) = 294(2.5+x)$	B1	
		3	
(iii)	$441(2-x) - 15 \times 9.8 - 294(2.5+x) = 15\frac{d^2x}{dt^2}$	M1 A1	Equation of motion involving 3 forces
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -49x$	M1	Obtaining $\frac{d^2x}{dt^2} = -\omega^2 x$ (+c)
	Motion is SHM with period $\frac{2\pi}{\omega} = \frac{2\pi}{7} = 0.898 \text{ s}$	A1 4	Accept $\frac{2}{7}\pi$
(iv)	Centre of motion is AP = 5 If minimum value of AP is 3.5, amplitude is 1.5 Maximum value of AP is 6.5 m	B1 1	
(v)	When $AP = 4.1, x = 0.9$		
	Using $v^2 = \omega^2 (A^2 - x^2)$	M1	
	$v^2 = 49(1.5^2 - 0.9^2)$	A1	
	Speed is 8.4 m s^{-1}	A1 3	Accept ±8.4 or -8.4
	$OR x = 1.5 \sin 7t$		Or $x = 1.5 \cos 7t$
	When $x = 0.9$, $7t = 0.6435$ $(t = 0.0919)$		or $7t = 0.9273$ ($t = 0.1325$)
	$v = 7 \times 1.5 \cos 7t$ M1		or $v = -7 \times 1.5 \sin 7t$
	$=10.5\cos(0.6435)$ A1		$= (-) 10.5 \sin(0.9273)$
	= 8.4 A1		

(vi)		M1	For $\cos(\sqrt{49} t)$ or $\sin(\sqrt{49} t)$
	$x = 1.5 \cos 7t$	A1	or $x = 1.5 \sin 7t$ M1A1 above can be awarded in (v) if not earned in (vi)
	When $1.5 \cos 7t = 0.5$	M1	or other fully correct method to find the required time e.g. $0.400 - 0.224$ or
	Time taken is 0.176 s	A1 4	0.224 - 0.049 Accept 0.17 or 0.18

4 (i)	$\int \pi y^2 dx = \int_1^4 \pi x dx$ = $\left[\frac{1}{2}\pi x^2\right]_1^4 = 7.5\pi$ $\int \pi x y^2 dx$ = $\int_1^4 \pi x^2 dx = \left[\frac{1}{3}\pi x^3\right]_1^4$ (= 21 π) $\bar{x} = \frac{21\pi}{7.5\pi}$ = 2.8		M1 A1 M1 A1 M1 A1 6	π may be omitted throughout
(ii)	Cylinder has mass $3\pi \rho$ Cylinder has CM at $x = 2.5$ $(4.5\pi \rho)\overline{x} + (3\pi \rho)(2.5) = (7.5\pi \rho)(2.8)$ $\overline{x} = 3$		B1 B1 A1 E1 5	Or volume 3π Relating three CMs (ρ and / or π may be omitted) or equivalent, e.g. $\overline{x} = \frac{(7.5\pi \rho)(2.8) - (3\pi \rho)(2.5)}{7.5\pi \rho - 3\pi \rho}$ Correctly obtained
(iii)(<i>A</i>)	Moments about A, $S \times 3 - 96 \times 2 = 0$ S = 64 N Vertically, $R + S = 96$ R = 32 N		M1 A1 M1 A1 4	Moments equation or another moments equation Dependent on previous M1
(<i>B</i>)	Moments about A, $S \times 3 - 96 \times 2 - 6 \times 1.5 = 0$ Vertically, $R + S = 96 + 6$ R = 35 N, $S = 67$ N OR Add 3 N to each of R and S R = 35 N, $S = 67$ N) M1 A2	M1 A1 A1 3	Moments equation Both correct <i>Provided</i> $R \neq S$ Both correct

Jan	2007

Q 1		mark		sub
(i)	before after $ \begin{array}{c} 10 \text{ m s}^{-1} & 0 \\ \hline 0.5 \text{ kg} & 29.5 \text{ kg} \\ \hline v_2 \text{ m s}^{-1} & v_1 \text{ m s}^{-1} \end{array} $	M		
	$\frac{v_1 - v_2}{0 - 10} = -0.8$ $v_1 = 0.3 \text{ so } V_1 = 0.3$ $v_2 = -7.7 \text{ so } V_2 = 7.7 \text{ m s}^{-1}$ in opposite to original direction	M1 A1 M1 A1 A1 A1 F1	PCLM and two terms on RHS All correct. Any form. NEL Any form Speed. Accept ±. Must be correct interpretation of clear working	7
(ii) (A)	$10 \times 0.5 = 30V$ so $V = \frac{1}{6}$	M1 A1 A1	PCLM and coalescence All correct. Any form. Clearly shown. Accept decimal equivalence. Accept no direction.	3
(B)	Same velocity No force on sledge in direction of motion	E1 E1	Accept speed	2
(iii)	before after $ \begin{array}{c} 2 \text{ m s}^{-1} \\ 39.5 \text{ kg} \\ V \\ u \end{array} $	B1		
	$2 \times 40 = 0.5u + 39.5V$ u - V = 10 Hence $V = 1.875$	M1 A1 B1 A1 17	PCLM, masses correct Any form May be seen on the diagram. Accept no reference to direction.	5

Jan 2007

Q 2		mark	comment	sub
(i)	$X = R \cos 30$ (1) $Y + R \sin 30 = L$ (2)	B1 M1 A1	Attempt at resolution	3
(ii)	ac moments about A $R - 2L = 0$	B1		
	Subst in (1) and (2)	M1	Subst their $R = 2L$ into their (1) or (2)	
	$X = 2L\frac{\sqrt{3}}{2}$ so $X = \sqrt{3}L$	E1	Clearly shown	
	$Y + 2L \times \frac{1}{2} = L$ so $Y + L = L$ and $Y = 0$	E1	Clearly shown	4
(iii)	(Below all are taken as tensions e. g. T_{AB} in AB)	B1 B1	Attempt at all forces (allow one omitted) Correct. Accept internal forces set as tensions or thrusts or a mix	2
(iv)	$\downarrow A T_{AD} \cos 30 \ (-Y) = 0$ so $T_{AD} = 0$	M1 E1	Vert equilibrium at A attempted. $Y = 0$ need not be explicit	2
(v)	Consider the equilibrium at pin-joints	M1	At least one relevant equilib attempted	
	A \rightarrow $T_{AB} - X = 0$ so $T_{AB} = \sqrt{3}L$ (T)	B1	(T) not required	
	$C \downarrow L + T_{CE} \cos 30 = 0$	B1	Or equiv from their diagram	
	so $T_{\rm CE} = \frac{-2L}{\sqrt{3}}$ so $\frac{2L}{\sqrt{3}} \left(= \frac{2L\sqrt{3}}{3} \right)$ (C)	B1	Accept any form following from their	
	$C \leftarrow T_{BC} + T_{CE} \cos 60 = 0$	B1	equation. (C) not required. Or equiv from their diagram	
	so $T_{\rm BC} = -\left(-\frac{2\sqrt{3}L}{3}\right) \times \frac{1}{2} = \frac{\sqrt{3}L}{3}$ (T)	B1 F1	inconsistent signs even if right answer obtained. (T) not required. T and C consistent with their answers and	
			their diagram	7
(vi)	↓ B $T_{\rm BD} \cos 30 + T_{\rm BE} \cos 30 = 0$ so $T_{\rm BD} = -T_{\rm BE}$ so mag equal and opp sense	M1 E1	Resolve vert at B A statement required	2
		20		2

4762

Jan 2007

Q 3		mark		sub
(i)	(10, 2, 2.5)	B1		1
(ii)	By symmetry $\overline{x} = 10,$ $\overline{y} = 2$ $(240 + 80)\overline{z} = 80 \times 0 + 240 \times 2.5$ so $\overline{z} = 1.875$	B1 B1 B1 M1 A1	Total mass correct Method for c.m. Clearly shown	5
(iii)	$\overline{x} = 10$ by symmetry $(320 + 80) \left(\frac{\overline{x}}{\overline{y}} \right) = 320 \left(\begin{array}{c} 10\\2\\1.875 \end{array} \right) + 80 \left(\begin{array}{c} 10\\4\\3 \end{array} \right)$	E1 M1	Could be derived Method for c.m.	
	$\overline{y} = 2.4$ $\overline{z} = 2.1$	B1 B1 E1 E1	y coord c.m. of lid z coord c.m. of lid shown shown	6
(iv)	$\frac{2.4 \text{ cm}}{2.1 \text{ cm}}$ $\frac{5 \text{ cm}}{5 \text{ cm}}$ $\frac{2.4 \text{ cm}}{30^{\circ}}$ $\frac{30^{\circ}}{40 \text{ N}}$ c.w moments about X $40 \times 0.024 \cos 30 - 40 \times 0.021 \sin 30$ $= 0.41138 \text{ so } 0.411 \text{ N m } (3 \text{ s. f.})$	B1 B1 B1 E1	Award for correct use of dimensions 2.1 and 2.4 or equivalent 1 st term o.e. (allow use of 2.4 and 2.1) 2 nd term o.e. (allow use of 2.4 and 2.1) Shown [Perpendicular method: M1 Complete method: A1 Correct lengths and angles E1 Shown]	4
(v)	0.41138 0.05 <i>P</i> = 0 <i>P</i> = 8.22768 so 8.23 (3 s. f.)	M1 A1 18	Allow use of 5 Allow if cm used consistently	2

Jan	2007
•••••	

Q 4		mark		sub		
(i)	$F_{\text{max}} = \mu R$ $R = 2g \cos 30$ so $F_{\text{max}} = 0.75 \times 2 \times 9.8 \times \cos 30 = 12.730$	M1 B1	Must have attempt at R with mg resolved			
	so 12.7 N (3 s. f.)	A1	[Award 2/3 retrospectively for limiting friction seen below]			
	either Weight cpt down plane is $2gsin 30 = 9.8$ N so no as $9.8 < 12.7$ or	B1 E1	The inequality must be properly justified			
	Slides if $\mu < \tan 30$ But 0.75 > 0.577 so no	B1 E1	The inequality must be properly justified	5		
(ii) (A)	Increase in GPE is $2 \times 9.8 \times (6 + 4 \sin 30) = 156.8 \text{ J}$	M1 B1 A1	Use of <i>mgh</i> 6 + 4 sin 30	3		
(B)	WD against friction is $4 \times 0.75 \times 2 \times 9.8 \times \cos 30 = 50.9222$ J	M1 A1	Use of WD = Fd	2		
(C)	Power is 10×(156.8 + 50.9222)/60	M1	Use $P = WD/t$			
	= 34.620 so 34.6 W (3 s. f.)	A1		2		
(iii)	$0.5 \times 2 \times 9^2$ $= 2 \times 9.8 \times (6 + x \sin 30)$	M1	Equating KE to GPE and WD term. Allow sign errors and one KE term omitted. Allow 'old' friction as well.			
	+ $0.5 \times 2 \times 4^{2}$ -90 so r = 3.8163 so 3.82 (3 s f)	B1 A1 A1 A1	Both KE terms. Allow wrong signs. All correct but allow sign errors All correct, including signs.			
	55 % - 5.0105 50 5.02 (5 5.1.)	17		5		
		1/				

4762 - Mechanics 2

General Comments

Many excellent scripts were seen in response to this paper with the majority of candidates able to make some progress worthy of credit on every question. The majority of candidates seemed to understand the principles required. However, diagrams in many cases were poor and not as helpful to the candidate as they could have been and some candidates did not clearly identify the principle or process being used. As has happened in previous sessions, those parts of the questions that were least well done were those that required an explanation or interpretation of results or that required the candidate to *show* a given answer. In the latter case some candidates failed to include all of the relevant steps in the working.

Comments on Individual Questions

- 1 Many candidates gained significant credit on this question. Those that drew a diagram were usually more successful than those who did not. Many candidates did not indicate which direction was to be positive and this did lead to some errors in signs or inconsistencies between equations.
 - (i) The majority of candidates were able to gain some credit for this part of the question. Sign errors occurred in a few cases in the use of Newton's experimental law and many candidates forgot to indicate the direction in which the ball was travelling after the impact.
 - (ii) (A) Almost all the candidates could gain full credit for this part of the question.
 - (B) Very few candidates could obtain any credit for this part. Many did not appreciate the vector nature of the problem and merely stated (incorrectly) that the sledge would speed up because the mass had decreased and momentum had to be conserved. A small number of candidates appreciated that there would be no change in the velocity of the sledge but could not give a valid reason for this. Few mentioned that there was no force on the sledge in the direction of motion.
 - (iii) Many candidates were able to gain full credit for this part of the question. Of those who did not, a significant minority drew an inadequately labelled diagram or made errors with the masses. A small number of candidates did not understand the significance of the velocity of the snowball being relative to the sledge and assumed that the snowball had a speed of 10 m s⁻¹.
- 2 Some excellent answers to this question were seen, with many candidates gaining almost full credit. It was pleasing to see that there were fewer mistakes made with inconsistent equations than has been the case in previous sessions.
 - (i) This part was well done by almost all the candidates.
 - (ii) Most candidates did well on this part of the question. Some arithmetic errors were seen and, in a few cases, some 'creative' algebra to try to establish the given results.

- (iii) In most cases the standard of the diagrams was satisfactory and worth some credit but a significant minority of candidates did not label the internal forces and/or omitted one or more of the external forces. A few candidates obviously changed the diagram in response to their answers as they worked through the following parts of the question and this then led to mistakes.
- (iv) This part of the question caused few problems.
- (v) Many candidates scored well on this part of the question. Those who did not were usually those who drew an inadequate diagram or who ignored their diagram; these made mistakes with signs or produced equations that were inconsistent with each other and with the diagram drawn in part (iii).
- (vi) This part of the question was not as well done as previous parts. Arguments based purely on symmetry at B were common but few appreciated that the vertical equilibrium had to be considered. Those candidates who attempted to look at the vertical equilibrium often forgot to resolve the forces in BD and BE. A common answer was to simply write down $T_{BD} = \pm T_{BE}$ without any supporting argument or interpretation of the result.
- 3 Only the last two parts of this question caused any problems to the vast majority of candidates. The principles behind the calculation of centres of mass appeared to be well understood and candidates who adopted column vector notation made fewer mistakes than those who calculated the co-ordinates separately.
 - (i) Most obtained full credit for this part.
 - (ii) Few candidates had difficulty with this part.
 - (iii) Most candidates were able to obtain full credit for this part. A minority of them wrongly assigned a mass of 100 units to the lid and it was common to see the z co-ordinate of the centre of mass of the lid assumed to be 2.5 cm. However, many who made this error realised the mistake and clearly corrected it. Unfortunately, there were some candidates who made both of the above errors, completed the working and still stated 2.1 as the z component of the centre of mass.
 - (iv) Few candidates made much progress here. The most common mistake was to ignore one of the components of the weight. Trigonometric errors were also common.
 - (v) Very few correct responses to this part were seen. Many of those candidates who appreciated that the moment of *P* had to be equated to the clockwise moment of the weight from the previous part had inconsistent units for the distance of *P* from the pivot.

1(a)(i)	$[Velocity] = LT^{-1}$	B1	(Deduct 1 mark if answers given as
	[Acceleration] = LT^{-2}	B1	ms^{-1} , ms^{-2} , $kgms^{-2}$ etc)
	$[Force] = MLT^{-2}$	B1	
	$[\text{Density }] = ML^{-3}$	B1	
	$[Pressure] = M L^{-1} T^{-2}$	B1	
		5	
(ii)	$[P] = M L^{-1} T^{-2}$		
	$\left[\frac{1}{2}\rho v^{2}\right] = (M L^{-3})(L T^{-1})^{2}$	M1	Finding dimensions of 2nd or 3rd
	$= M L^{-1} T^{-2}$	A1	term
	$[\rho g h] = (M L^{-3})(L T^{-2})(L) = M L^{-1} T^{-2}$	A1	
	All 3 terms have the same dimensions	E1	Allow e.g. 'Equation is
		4	following correct work
(b)(i)			
	<u>↑h</u>		
	2.2	M1	For a 'cos' curve (starting at the
			highest point)
	1.6 -	A1	Approx correct values marked on
		2	both axes
	0		
	J°41 C		
(ii)	Period $\frac{2\pi}{2} = 3.49$	M1	
	$\omega = 1.8$	A1	Accept $\frac{2\pi}{2}$
		M1	For $h = c + a \cos/\sin w$ with either
		1011	$c = \frac{1}{2}(1.6 + 2.2)$ or $a = \frac{1}{2}(2.2 - 1.6)$
	$h = 1.9 + 0.3 \cos 1.8t$	F1	
(:::)	When h 17 floot is 0.2 m below control	4	
(111)	when $n = 1.7$, float is 0.2 in below centre Acceleration is $\omega^2 x = 1.8^2 \times 0.2$	M141	Award M1 if there is at most one
	$= 0.648 \text{ m s}^{-2} \text{ upwards}$	Al cao	error
		3	
	OR When $h = 1.7$, $\cos 1.8t = -\frac{2}{3}$		
	(1.8t = 2.30, t = 1.28)		
	Acceleration $\ddot{h} = -0.3 \times 1.8^2 \cos 1.8t$ M1		
	$= -0.3 \times 1.8^2 \times (-\frac{2}{3})$ A1		
	$= 0.648 \text{ m s}^{-2} \text{ upwards A1 cao}$		

2 (i)	$R\cos 60 = 0.4 \times 9.8$ Normal reaction is 7.84 N		M1 A1	2	Resolving vertically (e.g. $R \sin 60 = mg$ is M1A0 $R = mg \cos 60$ is M0)
(ii)	$R \sin 60 = 0.4 \times \frac{v^2}{2.7 \sin 60}$ Speed is 6.3 ms ⁻¹		M1 M1 A1 A1 cao	4	Horizontal equation of motion Acceleration $\frac{v^2}{r}$ (M0 for $\frac{v^2}{2.7}$)
	OR $R \sin 60 = 0.4 \times (2.7 \sin 60)\omega^2$ $\omega = 2.694$ $v = (2.7 \sin 60)\omega$ Speed is 6.3 ms^{-1} A1	M1 A1 M1 cao		4	Horizontal equation of motion or $R = 0.4 \times 2.7 \times \omega^2$ For $v = r\omega$ (M0 for $v = 2.7\omega$)
(iii)	By conservation of energy, $\frac{1}{2} \times 0.4 \times (9^2 - v^2) = 0.4 \times 9.8 \times (2.7 + 2.7 \cos \theta)$ $81 - v^2 = 52.92 + 52.92 \cos \theta$ $v^2 = 28.08 - 52.92 \cos \theta$		M1 A1 A1	3	Equation involving KE and PE Any (reasonable) correct form e.g. $v^2 = 81-52.92(1+\cos\theta)$
(iv)	$R + 0.4 \times 9.8 \cos \theta = 0.4 \times \frac{v^2}{2.7}$ $R + 3.92 \cos \theta = \frac{0.4}{2.7} (28.08 - 52.92 \cos \theta)$ $R + 3.92 \cos \theta = 4.16 - 7.84 \cos \theta$ $R = 4.16 - 11.76 \cos \theta$		M1 A1 M1 A1 E1	5	Radial equation with 3 terms Substituting expression for v^2 <i>SR</i> If θ is taken to the downward vertical, maximum marks are: M1A0A0 in (iii) M1A1M1A1E0 in (iv)
(v)	Leaves surface when $R = 0$ $\cos \theta = \frac{4.16}{11.76}$ $v^2 = 28.08 - 52.92 \times \frac{4.16}{11.76}$ (= 9.36) Speed is 3.06 m s ⁻¹		M1 A1 M1 A1 cao	4	Dependent on previous M1 or using $mg \cos \theta = \frac{mv^2}{r}$

3 (i)	Tension is $637 \times 0.1 = 63.7$ N	B1	
	Energy is $\frac{1}{2} \times 637 \times 0.1^2$	M1	
	= 3.185 J	A1	
		3	
(ii)	Let θ be angle between RA and vertical		
	$\cos\theta = \frac{5}{13} (\theta = 67.4^\circ)$	B1	
	$T\cos\theta = mg$	M1	Resolving vertically
	$63.7 \times \frac{5}{13} = m \times 9.8$	A1	
	Mass of ring is 2.5 kg	E1	
		4	
(iii)		M1	Considering PE
	Loss of PE is $2.5 \times 9.8 \times (0.9 - 0.5)$	A1	or PE at start and finish
		M1	Award M1 if not more than one
	EE at lowest point is $\frac{1}{2} \times 637 \times 0.3^2$ (= 28.665)	A1	
	By conservation of energy,	M1	Equation involving KE DE and EE
	$2.5 \times 9.8 \times 0.4 + \frac{1}{2} \times 2.5u^2 = \frac{1}{2} \times 637 \times 0.3^2 - 3.185$	F1	Equation involving KE, I E and EE
	$9.8 + 1.25u^2 = 25.48$		
	$u^2 = 12.544$		
	u = 3.54	A.1 cao	
		7	
(iv)	From lowest point to level of A,		
	Loss of EE is 28.665	M1	EE at 'start' and at level of A
	Gain in PE is $2.5 \times 9.8 \times 0.9 = 22.05$	M1	PE at 'start' and at level of A
		M1	(For M2 it must be the same 'start')
		IVI I	<i>equivalent.</i>
	Since 28.665 > 22.05,		$e.g. \frac{1}{2}mu^2 + 3.185 = mg \times 0.5 + \frac{1}{2}mv^2$)
	Ring will rise above level of A	A1 cao	Fully correct derivation
		4	-
			SR If 637 is used as modulus,
			maximum marks are:
			(I) $BUWHAU$ (ii) $B1M1\Delta 1E0$
			(ii) $M1A1M1A1M1F1A0$
			(iv) M1M1M1A0

-	r	r	
4 (a)	Area is $\int_{0}^{2} x^{3} dx = \left[\frac{1}{4}x^{4}\right]_{0}^{2} = 4$	B1	
	$\int x y \mathrm{d}x = \int_0^2 x^4 \mathrm{d}x$	M1	
	$=\left[\frac{1}{5}x^{5}\right]_{0}^{2}=6.4$	A1	
	$\overline{x} = \frac{6.4}{4} = 1.6$	A1	
	$\int \frac{1}{2} y^2 \mathrm{d}x = \int_0^2 \frac{1}{2} x^6 \mathrm{d}x$	M1	Condone omission of $\frac{1}{2}$
	$=\left[\frac{1}{14}x^7\right]_0^2 = \frac{64}{7}$	A1	
	$\overline{y} = \frac{\int \frac{1}{2} y^2 \mathrm{d}x}{\int y \mathrm{d}x}$	M1	
	$=\frac{\frac{64}{7}}{4}=\frac{16}{7}$	A1 8	Accept 2.3 from correct working
(b)(i)	Volume is $\int \pi y^2 dx = \int_{1}^{2} \pi (4 - x^2) dx$	M1	π may be omitted throughout
	$= \pi \left[4x - \frac{1}{3}x^3 \right]_1^2 = \frac{5}{3}\pi$	A1	For $\frac{5}{3}$
	$\int \pi x y^2 dx = \int_1^2 \pi x (4 - x^2) dx$	M1	
	$= \pi \left[2x^2 - \frac{1}{4}x^4 \right]_1^2 = \frac{9}{4}\pi$	A1	For $\frac{9}{4}$
	$\overline{x} = \frac{\int \pi x y^2 dx}{\int \pi y^2 dx}$	M1	
	$=\frac{\frac{9}{4}\pi}{\frac{5}{3}\pi}=\frac{27}{20}=1.35$	E1 6	Must be fully correct
(ii)	Height of solid is $h = 2\sqrt{3}$ $T h = mg \times 0.35$	B1 M1 F1	Taking moments
	F = I = 0.101mg, $R = mgLeast coefficient of friction is \frac{F}{R} = 0.101$	A1 4	Must be fully correct (e.g. A0 if $m = \frac{5}{3}\pi$ is used)

Mark Scheme

January 2008

1(a)(i)	$[Force] = MLT^{-2}$	B1	
	$[Density] = ML^{-3}$	B1	
		2	
(ii)	$[E] = \frac{[F][l_0]}{[E]} = \frac{(MLT^{-2})(L)}{[E]}$	B1	for $[A] = L^2$
	$[A][l-l_0]$ (L ²)(L)	N/1	Obtaining the dimensions of F
	$= M L^{-1} T^{-2}$		
		3	
(111)		5	
(111)	$T = L^{\alpha} (M L^{-3})^{\beta} (M L^{-1} T^{-2})^{\gamma}$		
	$-2\gamma = 1, \beta + \gamma = 0$		
	$\gamma = -\frac{1}{2}$	B1 cao	
	$\beta = \frac{1}{2}$		
			Obtaining equation involving
	$\alpha - 3\beta - \gamma = 0$		
	$\alpha = 1$	Δ1	a, p, 7
		5	
(b)	AB = 1.7 m	D1	
(D)	AP = 1.7 III	M1	Resolving in any direction
	$ \begin{array}{c} r = 1 \cos \theta \\ R + T \sin \theta = 5 \times 0.8 \end{array} $	M1	Resolving in another direction
	$K + I \sin \theta = 3 \times 9.8$		(M1 for resolving requires no
			force omitted, with attempt to
			resolve all appropriate forces)
	$T\cos\theta = 0.4(49 - T\sin\theta)$	M1	Using $F = 0.4R$ to obtain an
	$\frac{8}{10}T = 0 A(A9 - \frac{15}{10}T)$		equation involving just one force
	$17^{1} - 0.7(7) - 17^{1}$	A1	(or <i>k</i>)
	T = 23.8	Δ1	Correct equation Allow
	T = k(1, 7, -1, 5)	/ \ 1	T cos 61.9 etc
	$I = \kappa(1.7 - 1.3)$	M1	or $R = 28$ or $F = 11.2$ Mav be
	Stiffness is 119 N m ⁻¹	A1	implied
			Allow M1 for $T = \frac{\lambda}{1.5} \times 0.2$
		_	If $R = 49$ is assumed, max
		8	marks are
			B1M1M0M0A0A0M1A0
L		I	

4763 Mechanics 3

2(a)(i)	$0.1 + 0.01 \times 9.8 = 0.01 \times \frac{u^2}{0.55}$	M1 A1	Using acceleration $u^2/0.55$
	Speed is $3.3 \mathrm{ms^{-1}}$	A1 3	
(ii)	$\frac{1}{2}m(v^2 - u^2) = mg(2 \times 0.55 - 0.15)$ $\frac{1}{2}(v^2 - 3.3^2) = 9.8 \times 0.95$ $v^2 = 29.51$	M1 A1	Using conservation of energy (<i>ft is</i> $v^2 = u^2 + 18.62$)
	$R - mg \cos \theta = m \frac{v^2}{a}$ $R - 0.01 \times 9.8 \times \frac{0.4}{0.55} = 0.01 \times \frac{29.51}{0.55}$ Normal reaction is 0.608 N	M1 A1 A1 5	Forces and acceleration towards centre (<i>ft is</i> $\frac{u^2 + 22.54}{55}$)
(b)(i)	$T = 0.8 r \omega^2$ $T = \frac{160}{2} (r - 2)$	B1 B1	
	$\omega^{2} = \frac{80(r-2)}{0.8r} = \frac{100(r-2)}{r}$ $\omega^{2} = 100 - \frac{200}{r} < 100, \text{ so } \omega < 10$	E1	
	r	E1 4	
(ii)	$EE = \frac{1}{2} \times \frac{160}{2} \times (r-2)^2 = 40(r-2)^2$ $KE = \frac{1}{2}m(r\omega)^2$	B1 M1	Use of $\frac{1}{2}mv^2$ with $v = r\omega$
	$= \frac{1}{2} \times 0.8 \times r^2 \times \frac{100(r-2)}{r}$ = 40r(r-2) Since r > r - 2, 40r(r-2) > 40(r-2)^2	A1	
	i.e. KE > EE	E1 4	From fully correct working only
(iii)	When $\omega = 6$, $36 = \frac{100(r-2)}{r}$ r = 3.125	M1	Obtaining <i>r</i>
	T = 80(r - 2) = 80(3.125 - 2) Tension is 90 N	M1 A1 cao 3	

4763

3 (i)	dx			
	$\frac{dt}{dt} = A\omega\cos\omega t - B\omega\sin\omega t$	B1		
	$\frac{d^2x}{dt^2} = -A\omega^2 \sin \omega t - B\omega^2 \cos \omega t$	B1 ft		Must follow from their <i>x</i>
	$= -\omega^2 (A\sin\omega t + B\cos\omega t) = -\omega^2 x$	E1		Fully correct completion
			3	SR For $\dot{x} = -A\omega\cos\omega t + B\omega\sin\omega t$
				$\ddot{x} = -A\omega^2 \sin \omega t - B\omega^2 \cos \omega t$
				award B0B1E0
(ii)	<i>B</i> = 2	B1		
		M1		Using $\frac{dx}{dt} = -1.44$ when $t = 0$
	$A\omega = -1.44$	A1 cao		dt
	2	M1		$\frac{d^2 x}{dt^2} = -0.18$ when $t = 0$ (or $x = 2$)
	$-B\omega^2 = -0.18$ Or	A1 cao		d <i>i</i>
	$-0.18 = -\omega^{2}(2)$	A1 cao	_	
	$\omega = 0.3, A = -4.8$		6	
(iii)	Period is $\frac{2\pi}{2\pi} = \frac{2\pi}{2\pi} = 20.94 = 20.9 \text{ s}$			
	$\omega = 0.3$	El		
	Amplitude is			or $1.44^2 = 0.3^2(a^2 - 2^2)$
	$\sqrt{A^2 + B^2} = \sqrt{4.8^2 + 2^2}$	N/4		
	= 5.2 m	A1		
			3	
(iv)	$x = -4.8\sin 0.3t + 2\cos 0.3t$			
	$v = -1.44 \cos 0.3t - 0.6 \sin 0.3t$	N/1		Finding www.hon (12 and (24
	When			Finding x when $t = 12$ and $t = 24$
	t = 12, x = 0.3306 ($v = 1.56$)			
	When	A1		Both displacements correct
	t = 24, x = -2.5929 ($v = -1.35$)			
	Distance travelled is	M1		Considering change of direction
	(5.2 - 0.3306) + 5.2 + 2.5929	M1		Correct method for distance
	= 12.7 m	A1		ft from their $A = R = \infty$ and amplitude:
			5	Third M1 requires the method to be
				comparable to the correct one
				A1A1 both require $p = 0.3$ $A \neq 0$ $B \neq 0$
				$\omega \approx 0.5, A \neq 0, B \neq 0$
				INOTE IT IFOM $A = +4.8$ IS $r_{ee} = -3.92$ ($v < 0$) $r_{ee} = -5.03$ ($v > 0$)
				Distance is $(5.2-3.92) + 5.2 + 5.03$
				=11.5

4 (i)	$V = \int_{1}^{8} \pi \left(x^{-\frac{1}{3}} \right)^2 dx$	M1	π may be omitted throughout
	$=\pi \left[3x^{\frac{1}{3}} \right]_{1}^{8} = 3\pi$	A1	
	$V \overline{x} = \int_{1}^{8} \pi x (x^{-\frac{1}{3}})^2 \mathrm{d}x$	M1	
	$= \pi \left[\frac{3}{4} x^{\frac{4}{3}} \right]_{1}^{8} = \frac{45}{4} \pi$	A1	
	$\overline{x} = \frac{\frac{45}{4}\pi}{3\pi}$	M1	Dependent on previous M1M1
	$=\frac{-}{4}=3.75$	A1 6	
(ii)	$A = \int_{-1}^{8} x^{-\frac{1}{3}} \mathrm{d}x$	M1	
	$= \left[\frac{3}{2} x^{\frac{2}{3}} \right]_{1}^{8} = \frac{9}{2} = 4.5$	A1	
	$A\overline{x} = \int_{1}^{8} x (x^{-\frac{1}{3}}) \mathrm{d}x$	M1	
	$= \left[\frac{3}{5} x^{\frac{5}{3}} \right]_{1}^{8} = \frac{93}{5} = 18.6$	A1	
	$\overline{x} = \frac{18.6}{4.5} = \frac{62}{15} (\approx 4.13)$	A1	
	$A \overline{y} = \int_{1}^{8} \frac{1}{2} (x^{-\frac{1}{3}})^2 \mathrm{d}x$	M1	If $\frac{1}{2}$ omitted, award M1A0A0
	$= \left[\frac{3}{2} x^{\frac{1}{3}} \right]_{1}^{8} = \frac{3}{2} = 1.5$	A1	
	$\overline{y} = \frac{1.5}{4.5} = \frac{1}{3}$	A1 8	

(iii)	$(1)\left(\frac{\overline{x}}{\overline{y}}\right) + (3.5)\left(\frac{4.5}{0.25}\right) = (4.5)\left(\frac{62}{15}\right) = \left(\frac{18.6}{1.5}\right)$	M1	Attempt formula for CM of composite body (one coordinate
		M1	sufficient) Formulae for both coordinates;
			signs must now be correct, but areas (1 and 3.5) may be
		Δ1	wrong. If $1 < \overline{r} < 8$
	$\overline{x} = 2.85$ $\overline{x} = 0.625$	A1 4	ft only if $0.5 < \overline{y} < 1$
	y = 0.025		Other methods: M1A1 for \bar{x}
			WITATIOF y
			(In each case, M1 requires a complete and correct method leading to a numerical value)

4763 Mechanics 3

1(a)(i)	[Velocity] = LT^{-1}	B1	(Deduct 1 mark if kg, m, s are
	[Acceleration] = LT^{-2}	B1	consistently used instead of M ,
	$[Force] = MLT^{-2}$	B1	L, 1)
		3	
(ii)	$\begin{bmatrix} \lambda \end{bmatrix} = \begin{bmatrix} Force \end{bmatrix} = \frac{MLT^{-2}}{2}$		
	$[v^{2}] = [v^{2}] = (LT^{-1})^{2}$	M1	
	$= \mathbf{M} \mathbf{L}^{-1}$	A1 cao	
		2	
(iii)	$\left[\frac{U^2}{U^2}\right] = \frac{(LT^{-1})^2}{U^2} = I$	P1 000	(Condone constants left in)
	$\begin{bmatrix} 2g \end{bmatrix}^{-} LT^{-2}$	BICao	
	$\left[\frac{\lambda U^4}{2}\right] = \frac{(\mathrm{M}\mathrm{L}^{-1})(\mathrm{L}\mathrm{T}^{-1})^4}{2}$		
	$\begin{bmatrix} 4mg^2 \end{bmatrix}$ M (LT ⁻²) ²	M1	
	$=\frac{ML^{3}T^{-4}}{L}=L$		
	$M L^2 T^{-4}$	A1 cao	
	[H] = L; all 3 terms have the same dimensions	E1	Dependent on B1M1A1
		4	
(iv)	$(M L^{-1})^2 (L T^{-1})^{\alpha} M^{\beta} (L T^{-2})^{\gamma} = L$		
	$\beta = -2$	B1 cao	
	$-2 + \alpha + \gamma = 1$	M1	At least one equation in α , γ
	$-\alpha - 2\gamma = 0$	A1	One equation correct
	$\alpha = 6$	A1 cao	
	$\gamma = -3$	A1 cao	
		5	

(b)	EE is $\frac{1}{2} \times \frac{2060}{24} \times 6^2$ (=1545) (PE gained) = (EE lost) + (KE lost)	B1	
		M1	Equation involving PE, EE and KE Can be awarded from start to point where string becomes slack <i>or</i> any complete method (e.g. SHM) for finding v^2 at natural length If B0, give A1 for $v^2 = 88.2$ correctly obtained
	$50 \times 9.8 \times h = 1545 + \frac{1}{2} \times 50 \times 12^{2}$ $490h = 1545 + 3600$	F1	or $0 = 88.2 - 2 \times 9.8 \times s$ (s = 4.5)
	h = 10.5 OA = 30 - h = 19.5 m	A1	Notes $\frac{1}{2} \times \frac{2060}{24} \times 6$ used as EE can
		4	$\frac{\text{earn B0M1F1A0}}{\frac{2060}{24} \times 6}$ used as EE gets B0M0

4763

Mark Scheme

PMT

2 (i)	$T \cos \alpha = mg$ 3.92 cos $\alpha = 0.3 \times 9.8$	M1	Resolving vertically
	$\cos \alpha = 0.75$ Angle is 41.4° (0.723 rad)	A1 2	(Condone sin / cos mix for M marks throughout this question)
(ii)	$T \sin \alpha = m \frac{v^2}{r}$ 3.92 sin $\alpha = 0.3 \times \frac{v^2}{4.2 \sin \alpha}$ Speed is 4.9 m s ⁻¹	M1 B1 A1 A1	Force and acceleration towards centre (condone $v^2/4.2$ or $4.2\omega^2$) For radius is $4.2\sin\alpha$ (= 2.778) Not awarded for equation in ω unless $v = (4.2\sin\alpha)\omega$ also
(iii)	v ²	4	appears
	$T - mg\cos\theta = m\frac{v}{a}$	M1	Forces and acceleration towards O
	$T - 0.3 \times 9.8 \times \cos 60^\circ = 0.3 \times \frac{6.4}{4.2}$	A1	
	Tension is 6.51 N	A1 3	
(iv)		M1	For $(-)mg \times 4.2\cos\theta$ in PE
	$\frac{1}{2}mv^2 - mg \times 4.2\cos\theta = \frac{1}{2}m \times 8.4^2 - mg \times 4.2\cos 60^\circ$	M1 A1	Equation involving $\frac{1}{2}mv^2$ and PE
	$v^2 - 82.32 \cos \theta = 70.56 - 41.16$ $v^2 = 29.4 + 82.32 \cos \theta$	E1 4	
(v)	$(T) - mg\cos\theta = m\frac{v^2}{a}$ $(T) - m \times 9.8\cos\theta = m \times \frac{29.4 + 82.32\cos\theta}{4.2}$	M1 M1 A1	Force and acceleration towards O Substituting for v^2
	String becomes slack when $T = 0$ -9.8cos θ = 7+19.6cos θ	M1	Dependent on first M1
	$\theta = 104^{\circ} (1.81 \text{ rad})$	A1 5	No marks for $v = 0 \Rightarrow \theta = 111^{\circ}$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{ c c c c c c } \hline & =5(4.7-x) & [=23.5-5x] \\ \hline & & & & \\ \hline & & & \\ \hline & & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline $
(ii) $T_{BQ} + mg - T_{PB} = m \frac{d^2 x}{dt^2}$ $S(4.7 - x) + 2.5 \times 9.8 - 35(x - 3.2) = 2.5 \frac{d^2 x}{dt^2}$ $I60 - 40x = 2.5 \frac{d^2 x}{dt^2}$ $\frac{d^2 x}{dt^2} = 64 - 16x$ E1 4 (iii) At the centre, $\frac{d^2 x}{dt^2} = 0$ $x = 4$ (iv) $\omega^2 = 16$ Period is $\frac{2\pi}{\sqrt{16}} = \frac{1}{2}\pi = 1.57$ s At the centre, $\frac{d^2 \pi}{\sqrt{16}} = \frac{1}{2}\pi = 1.57$ s At the centre, $\frac{2\pi}{\sqrt{16}} = \frac{1}{2}\pi = 1.57$ s At the centre, $\frac{1}{\sqrt{16}} = \frac{1}{\sqrt{16}} = \frac{1}{1$
(ii) $T_{BQ} + mg - T_{PB} = m \frac{d^{2}x}{dt^{2}}$ $5(4.7 - x) + 2.5 \times 9.8 - 35(x - 3.2) = 2.5 \frac{d^{2}x}{dt^{2}}$ $160 - 40x = 2.5 \frac{d^{2}x}{dt^{2}}$ $\frac{d^{2}x}{dt^{2}} = 64 - 16x$ E1 4 (iii) At the centre, $\frac{d^{2}x}{dt^{2}} = 0$ $x = 4$ (iv) $\omega^{2} = 16$ Period is $\frac{2\pi}{\sqrt{16}} = \frac{1}{2}\pi = 1.57$ s (v) Amplitude $A = 4.4 - 4 = 0.4$ m Maximum speed is $A\omega$ M1 M1 M1 Final Second content is $\frac{1}{2}\pi$ M1 Final Second content is $\frac{1}{2}\pi$ M1 Final Second content is $\frac{1}{2}\pi$ Final Second content i
$5(4.7-x)+2.5\times9.8-35(x-3.2) = 2.5 \frac{d^2 x}{dt^2}$ $160-40x = 2.5 \frac{d^2 x}{dt^2}$ $\frac{d^2 x}{dt^2} = 64-16x$ $E1$ 4 (iii) At the centre, $\frac{d^2 x}{dt^2} = 0$ $x = 4$ $M1$ At the centre, $\frac{d^2 x}{dt^2} = 0$ $M1$ At the centre, $\frac{d^2 x}{dt$
$160-40x = 2.5 \frac{d^2 x}{dt^2}$ $\frac{d^2 x}{dt^2} = 64-16x$ E1 4 (iii) At the centre, $\frac{d^2 x}{dt^2} = 0$ $x = 4$ M1 A1 2 (iv) $\omega^2 = 16$ Period is $\frac{2\pi}{\sqrt{16}} = \frac{1}{2}\pi = 1.57$ s M1 A1 B1 ft M1 A2 Accept $\frac{1}{2}\pi$ (v) Amplitude $A = 4.4 - 4 = 0.4$ m M1 Maximum speed is $A\omega$ M1
$\frac{d^{2}x}{dt^{2}} = 64 - 16x$ E1 4 (iii) At the centre, $\frac{d^{2}x}{dt^{2}} = 0$ $x = 4$ M1 A1 2 (iv) $\omega^{2} = 16$ Period is $\frac{2\pi}{\sqrt{16}} = \frac{1}{2}\pi = 1.57$ s M1 A1 2 (v) Amplitude $A = 4.4 - 4 = 0.4$ m M2 B1 ft ft is $ 4.4 - (iii) $ M1
(iii) At the centre, $\frac{d^2x}{dt^2} = 0$ x = 4 (iv) $\omega^2 = 16$ Period is $\frac{2\pi}{\sqrt{16}} = \frac{1}{2}\pi = 1.57$ s (v) Amplitude $A = 4.4 - 4 = 0.4$ m Maximum speed is $A\omega$ M1 A1 2 M1 A1 2 M2 A1 2 M1 A1
$\begin{array}{c c} \text{(iv)} & u^2 = 16 \\ \text{(iv)} & \omega^2 = 16 \\ \text{Period is } \frac{2\pi}{\sqrt{16}} = \frac{1}{2}\pi = 1.57 \text{ s} \end{array} \qquad \begin{array}{c c} \text{M1} & 2 \\ \text{M1} & 2 \\ \text{A1} & 2 \\ \text{A1} & 2 \\ \text{A2} & \mathbf{A1} \\ \text{A3} & \mathbf{A1} \\ \text{A4} & \mathbf{A1} \\ \text{A4} & \mathbf{A1} \\ \text{A5} & \mathbf{A1} \\ \text{A5} & \mathbf{A1} \\ \text{A6} & \mathbf{A1} \\ \text{A6} & \mathbf{A1} \\ \text{A6} & \mathbf{A1} \\ \text{A7} & \mathbf{A1} \\ \text{A8} & \mathbf{A1} \\ \text{A1} & \mathbf{A1} \\ \text{A1} & \mathbf{A1} \\ \text$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
(iv) $\omega^2 = 16$ Period is $\frac{2\pi}{\sqrt{16}} = \frac{1}{2}\pi = 1.57$ s (v) Amplitude $A = 4.4 - 4 = 0.4$ m Maximum speed is $A\omega$ M1 M1 M1 M1 M1 M1 M1 M1 M1 M1
Period is $\frac{2\pi}{\sqrt{16}} = \frac{1}{2}\pi = 1.57 \text{ s}$ (v) Amplitude $A = 4.4 - 4 = 0.4 \text{ m}$ Maximum speed is $A\omega$ B1 ft M1 M1 M1 M1 M1 M1 M1 M1 M1 M1
(v) Amplitude $A = 4.4 - 4 = 0.4$ m Maximum speed is $A\omega$ Accept $\frac{1}{2}\pi$ B1 ft M1
(v) Amplitude $A = 4.4 - 4 = 0.4$ m Maximum speed is $A\omega$ B1 ft ft is $ 4.4 - (iii) $
Maximum speed is $A\omega$ M1
$= 0.4 \times 4 = 1.6 \mathrm{ms^{-1}}$ A1 cao
(vi) $x = 4 + 0.4 \cos 4t$
M1 For $v = C \sin \omega t$ or $C \cos \omega t$
$v = (-) 1.6 \sin 4t$ A1 This M1A1 can be earned in (v)
When $v = 0.9$, $\sin 4t = -\frac{0.9}{1.6}$
$4t = \pi + 0.5974$ M1 Fully correct method for finding the required time
Time is 0.935 s A1 cao 4 e.g. $\frac{1}{4} \arcsin \frac{0.9}{1.6} + \frac{1}{2} \text{ period}$
$OR = 0.9^2 - 16(0.4^2 - y^2)$
y = -0.3307
M1 Using $v^2 = \omega^2 (A^2 - v^2)$
and $y = A\cos \omega t$ or $A\sin \omega t$
$y = 0.4 \cos 4t$ A1 For $y = (\pm) 0.331$ and
$\cos 4t = -\frac{0.3307}{2}$ $y = 0.4 \cos 4t$
$\begin{array}{c} 0.4 \\ 4t = \pi + 0.5974 \end{array} $ M1
Time is 0.935 s A1 cao

4763

4 (a)(i)	$V = \int \pi x^2 dy = \int_0^8 \pi \left(4 - \frac{1}{2} y\right) dy$	M1	π may be omitted throughout Limits not required for M marks throughout this question
	$=\pi \left[4y - \frac{1}{4}y^2 \right]_0^8 = 16\pi$	A1	
	$V \overline{y} = \int \pi y x^2 \mathrm{d}y$	M1	
	$= \int_{0}^{0} \pi y (4 - \frac{1}{2} y) \mathrm{d}y$	A1	
	$= \pi \left[2y^2 - \frac{1}{6}y^3 \right]_0^\circ = \frac{128}{3}\pi$ $- \frac{128}{3}\pi$	A1	
	$y = \frac{16\pi}{16\pi}$ $= \frac{8}{2} (\approx 2.67)$	M1	Dependent on M1M1
	5	A1 7	
(ii)	CM is vertically above lower corner	M1 M1	Trig in a triangle including θ
	$ \tan \theta = \frac{2}{\overline{y}} = \frac{2}{\frac{8}{3}} (=\frac{3}{4}) $	A1	Dependent on previous $M1$ Correct expression for $\tan \theta$ or
	$\theta = 36.9^{\circ}$ (= 0.6435 rad)	A1	Notes
		-	$\tan \theta = \frac{2}{\text{cand's } \overline{y}} \text{ implies } M1M1A1$
			$\tan \theta = \frac{\text{cand's } \overline{y}}{2} \text{ implies } M1M1$
			$ \tan \theta = \frac{1}{\operatorname{cand's} \overline{y}} $ without further
			evidence is M0M0

(b)			May use $0 \le x \le 2$ throughout
	$A = \int_{-2}^{2} (8 - 2x^2) \mathrm{d}x$	M1	Or (2) $\int_{0}^{8} \sqrt{4 - \frac{1}{2} y} dy$
	$= \left[8x - \frac{2}{3}x^3 \right]_{-2}^2 = \frac{64}{3}$	A1	
	$A \overline{y} = \int_{-2}^{2} \frac{1}{2} (8 - 2x^2)^2 \mathrm{d}x$	M1	or (2) $\int_{0}^{8} y \sqrt{4 - \frac{1}{2} y} dy$
	$= \left[32x - \frac{16}{3}x^3 + \frac{2}{5}x^5 \right]_{-2}^2$	M1	(<i>MO</i> if $\frac{1}{2}$ is omitted) For $32x - \frac{16}{3}x^3 + \frac{2}{5}x^5$ Allow one error
			or $-\frac{8}{3}y(4-\frac{1}{2}y)^{\frac{3}{2}}-\frac{32}{15}(4-\frac{1}{2}y)^{\frac{5}{2}}$
	$=\frac{1024}{17}$		Or $-\frac{64}{3}(4-\frac{1}{2}y)^{\frac{3}{2}}+\frac{16}{5}(4-\frac{1}{2}y)^{\frac{5}{2}}$
	$\overline{y} = \frac{\frac{1024}{15}}{\frac{64}{5}}$	A1	
	$=\frac{16}{5}=3.2$	M1	Dependent on first two M1's
		A1 7	
		•	

4763 Mechanics 3

1 (i)	$[Force] = MLT^{-2}$	B1	
	$[Density] = M L^{-3}$	B1	
		2	
(ii)	$[\eta] = \frac{[F][d]}{[\pi]} = \frac{(MLT^{-2})(L)}{[\pi]}$	B1	for $[A] = L^2$ and $[v] = LT^{-1}$
	$[A][v_2 - v_1] (L^2)(LT^{-1})$	M1	Obtaining the dimensions of η
	$=$ M L \cdot 1	A1	
		3	
(iii)	$\begin{bmatrix} 2a^2 \rho g \end{bmatrix}_{-} L^2 (M L^{-3}) (L T^{-2})_{-} L T^{-1}$	B1	For $[g] = LT^{-2}$
	$\begin{bmatrix} -9\eta \end{bmatrix}^{-} \mathbf{M} \mathbf{L}^{-1} \mathbf{T}^{-1}$	M1	Simplifying dimensions of RHS
	which is same as the dimensions of v	E1	Correctly shown
		3	
(iv)	$(ML^{-3})L^{\alpha}(LT^{-1})^{\beta}(ML^{-1}T^{-1})^{\gamma}$ is dimensionless		
	$\gamma = -1$	B1 cao	
	$-\beta - \gamma = 0$	M1	
	$-3 + \alpha + \beta - \gamma = 0$	M1A1	
	$\alpha = 1, \beta = 1$	A1 cao	
		5	
(v)	$R = \frac{\rho_{WV}}{\eta} = \frac{0.4 \times 25 \times 150}{1.6 \times 10^{-5}} (=9.375 \times 10^7)$	M1	Evaluating <i>R</i>
	$=\frac{1.3\times5\nu}{1.8\times10^{-5}}$	A1	Equation for <i>v</i>
	Required velocity is 260 m s^{-1}	A1 cao 3	

2		M1	Resolving vertically (weight and a
(a)(1)	$T\cos\alpha = T\cos\beta + 0.27 \times 9.8$	A1	Allow T_1 and T_2
	$\sin \alpha = \frac{1.2}{2.0} = \frac{3}{5}, \ \cos \alpha = \frac{4}{5} \ (\alpha = 36.87^{\circ})$		
	$\sin\beta = \frac{1.2}{1.3} = \frac{12}{13}, \ \cos\beta = \frac{5}{13} \ (\beta = 67.38^{\circ})$	B1	For $\cos \alpha$ and $\cos \beta$ [or α and β]
	$\frac{27}{65}T = 2.646$	M1	Obtaining numerical equation for T e.g. $T(\cos 36.9 - \cos 67.4) = 0.27 \times 9.8$
	Tension is 6.37 N	E1	(Condone 6.36 to 6.38) 5
(ii)		M1	Using $v^2/1.2$
	$T\sin\alpha + T\sin\beta = 0.27 \times \frac{v^2}{1.2}$	A1	Allow T_1 and T_2
	$6.37 \times \frac{3}{5} + 6.37 \times \frac{12}{13} = 0.27 \times \frac{\nu^2}{1.2}$	M1	Obtaining numerical equation for v^2
	$v^2 = 43.12$		
	Speed is 6.57 ms^{-1}	A1	4
(b)(i)	$0.2 \times 9.8 = 0.2 \times \frac{u^2}{1.25}$	M1	Using acceleration $u^2/1.25$
	$u^2 = 9.8 \times 1.25 = 12.25$		
	Speed is 3.5 ms^{-1}	E1	2
(ii)		M1	Using conservation of energy
	$\frac{1}{2}m(v^2 - 3.5^2) = mg(1.25 - 1.25\cos 60)$	A1	
	$v^2 = 24.5$		
	Radial component is $\frac{24.5}{1.25}$	M1	With numerical value obtained by using energy
	$= 19.6 \text{ ms}^2$	A1	(M0 if mass, or another term,
	-8.49 ms^{-2}	M1	
	- 0.77 ms	A1	6 For sight of $(m)g\sin 60^\circ$ with no other terms
	$T + 0.2 \times 9.8 \cos 60 = 0.2 \times 19.6$	M1	Radial equation (3 terms)
(iii)	Tension is 2.94 N	A1 cao	This M1 can be awarded in (ii)2

3 (i)	$\frac{980}{25}y = 5 \times 9.8$	M1	Using $\frac{\lambda y}{l_0}$ (Allow M1 for
	Extension is 1.25 m	A1 2	980y = mg)
(ii)	$T = \frac{980}{25}(1.25 + x)$ 5×9.8-39.2(1.25 + x) = 5 $\frac{d^2x}{dt^2}$ -39.2x = 5 $\frac{d^2x}{dt^2}$	B1 (ft) M1 F1	(ft) indicates ft from previous parts as for A marks Equation of motion with three terms Must have \ddot{x} In terms of x only
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -7.84x$	E1 4	
(iii)	$8.4^2 = 7.84(A^2 - 1.25^2)$ Amplitude is 3.25 m	M2 A1 A1 4	Using $v^2 = \omega^2 (A^2 - x^2)$
	OR M2 $\frac{980}{2 \times 25} y^2 = 5 \times 9.8y + \frac{1}{2} \times 5 \times 8.4^2$ A1 y = 4.5 Amplitude is $4.5 - 1.25 = 3.25$ m A1		Equation involving EE, PE and KE
	OR $x = A \sin 2.8t + B \cos 2.8t$ x = -1.25, v = 8.4 when $t = 0\Rightarrow A = 3, B = -1.25Amplitude is \sqrt{A^2 + B^2} = 3.25A1$		Obtaining <i>A</i> and <i>B</i> Both correct
(iv)	Maximum speed is $A\omega = 3.25 \times 2.8$ = 9.1 ms ⁻¹	M1 A1 2	or equation involving EE, PE and KE ft only if answer is greater than 8.4
(v)	$x = 3.25 \cos 2.8t$	B1 (ft)	or $x = 3.25 \sin 2.8t$ or $v = 9.1 \cos 2.8t$ or $v = 9.1 \sin 2.8t$ or $x = 3.25 \sin(2.8t + \varepsilon)$ etc or $x = \pm 3 \sin 2.8t \pm 1.25 \cos 2.8t$
	$-1.25 = 3.25 \cos 2.8t$	M1	Obtaining equation for <i>t</i> or ε by setting $x = (\pm)1.25$ or $v = (\pm)8.4$ or solving $\pm 3 \sin 2.8t \pm 1.25 \cos 2.8t = 3.25$
		M1	Strategy for finding the required time e.g. $\frac{1}{2.8} \sin^{-1} \frac{1.25}{3.25} + \frac{1}{4} \times \frac{2\pi}{2.8}$
	Time is 0.702 s	A1 cao 4	$2.8t - 0.3948 = \frac{1}{2}\pi \text{ or}$ 2.8t - 1.966 = 0

(vi)	e.g. Rope is light	B1B1B1	Three modelling assumptions
	Rock is a particle	3	
	Rope obeys Hooke's law / Perfectly elastic /		
	Within elastic limit / No energy loss in rope		
		[
4 (a)	$\int \frac{1}{2} y^2 dx = \int_{a}^{a} \frac{1}{2} (a^2 - x^2) dx$	M1	For integral of $(-2, -2)$
	$\int J_{-a}^{2}$	IVI 1	For integral of $(a - x)$
	$= \left[\frac{1}{2} \left(a^2 x - \frac{1}{3} x^3 \right) \right]_{-a}^{a}$		
	$=\frac{2}{3}a^3$	A1	
	$\frac{1}{3}a^{3}$		
	$y = \frac{1}{\frac{1}{2}\pi a^2}$	M1	Dependent on previous M1
	$=\frac{4a}{2}$		
	3π	E1	
		4	
(b)(i)	ch		π may be omitted throughout
	$V = \int \pi y^2 \mathrm{d}x = \int \pi (mx)^2 \mathrm{d}x$	M1	For integral of x^2
	$\int_{0}^{h} \int_{0}^{h} dx = 0$		or use of $V = \frac{1}{3}\pi r^2 h$ and $r = mh$
	$= \left[\frac{1}{3} \pi m^2 x^3 \right]_0 = \frac{1}{3} \pi m^2 h^3$	A1	
	$\int \pi x y^2 dx = \int_{a}^{b} \pi x (mx)^2 dx$		For integral of r^3
	$\int_0^{\infty} dx dx = \int_0^{\infty} dx dx$	MI	
	$= \left[\frac{1}{4} \pi m^2 x^4 \right]_0^h = \frac{1}{4} \pi m^2 h^4$	A1	
	$\overline{r} = \frac{\frac{1}{4}\pi m^2 h^4}{1}$		
	$\frac{1}{3}\pi m^2 h^3$	M1	Dependent on M1 for integral of
	$=\frac{3}{4}h$	51	<i>x</i> ³
		EI 6	
(ii)	$m = \frac{1}{2}\pi \times 0.7^2 \times 2.4 \circ - \frac{1}{2}\pi \circ \times 1.176$		
()	$W_{1} = \frac{3}{3} \times 607 \times 207 p = \frac{3}{3} \times 307 \times 1000$		
	$m_2 = \frac{1}{2}\pi \times 0.4^2 \times 1.1\rho = \frac{1}{2}\pi\rho \times 0.176$	DI	
	$VG_{2} = 1.3 + \frac{3}{2} \times 1.1 = 2.125$	RI	For m_1 and m_2 (or volumes)
		B1	or $\frac{1}{4} \times 1.1$ from base
	$(m_1 - m_2)(VG) + m_2(VG_2) = m_1(VG_1)$	M1	Attempt formula for composite
	$(VG) + 0.176 \times 2.125 = 1.176 \times 1.8$		body
	Distance (VG) is 1./4 m	AI 5	
(iii)	VQG is a right-angle	M1	
	VQ = VG cos θ where tan $\theta = \frac{0.7}{2.4}$ ($\theta = 16.26^{\circ}$)	M1	
	$V_{0} = 1.7428 \times \frac{24}{24}$		
	$vQ = 1.7428 \times \frac{1}{25}$		
	=1.67 m	A1 3	ft is VG×0.96
1			

4763

1 (i)		M1	Equation involving KE and PE
	$\frac{1}{2}m(v^2 - 1.4^2) = m \times 9.8(2.6 - 2.6\cos\theta)$	A1	
	$v^2 - 1.96 = 50.96 - 50.96 \cos \theta$		
	$v^2 = 52.92 - 50.96\cos\theta$	E1	
		3	
(ii)	$0.65 \times 9.8 \cos \theta - R = 0.65 \times \frac{v^2}{2.6}$	M1 A1	Radial equation involving v^2 / r
	$6.37 \cos \theta - R = 0.25(52.92 - 50.96 \cos \theta)$ $6.37 \cos \theta - R = 13.23 - 12.74 \cos \theta$	M1	Substituting for v^2 Dependent on previous M1
	$R = 19.11\cos\theta - 13.23$	A1 4	Special case: $R = 13.23 - 19.11 \cos \theta$ earns M1A0M1SC1
(iii)	Leaves surface when $R = 0$	M1	
	$\cos\theta = \frac{13.23}{19.11} (= \frac{9}{13}) (\theta = 46.19^{\circ})$	A1	(ft if $R = a + b\cos\theta$ and $0 < -\frac{a}{b} < 1$
	$v^2 = 52.92 - 50.96 \times \frac{9}{13}$	M1) Dependent on previous M1
	Speed is 4.2 m s^{-1}	A1	
(iv)		M1	Resolving vertically (3 terms)
	$T\sin\alpha + R\cos\alpha = 0.65 \times 9.8$	A1	Horiz ean involving v^2/r or $r\omega^2$
	$T\cos\alpha - R\sin\alpha = 0.65 \times \frac{1.2^2}{2.4}$	A1	······
	OR $T - mg\sin\alpha = m\left(\frac{1.2^2}{2.4}\right)\cos\alpha$ M1A1		
	$mg\cos\alpha - R = m\left(\frac{1.2^2}{2.4}\right)\sin\alpha$ M1A1		
	$\sin \alpha = \frac{2.4}{2.6} = \frac{12}{13}, \cos \alpha = \frac{5}{13} (\alpha = 67.38^{\circ})$	M1	
		M1	Solving to obtain a value of T or
	Tension is 6.03 N	A1	R Dependent on necessary M1s
	Normal reaction is 2.09 N	A1	(Accept 6, 2.1)
		0	Treat $\omega = 1.2$ as a misread
			leading to $T = 6.744$, $R = 0.3764$
			for 7 / 8

PMT

2 (i)	1	M1	Equation involving EE and KE
	$\frac{1}{2} \times 5000x^2 = \frac{1}{2} \times 400 \times 3^2$	A1	_
	Compression is 0.849 m	A1 3	Accept $\frac{3\sqrt{2}}{5}$
(ii)	Change in PE is $400 \times 9.8 \times (7.35 + 1.4) \sin \theta$	M1	Or $400 \times 9.8 \times 1.4 \sin \theta$
	$=400 \times 9.8 \times 8.75 \times \frac{1}{7}$		and $\frac{1}{2} \times 400 \times 4.54^2$
	= 4900 J	A1	Or 784+4116
	Change in EE is $\frac{1}{2} \times 5000 \times 1.4^2$ = 4900 J	M1	M1M1A1 can also be given for a correct equation in <i>x</i> (compression):
	Since Loss of PE = Gain of EE, car will be at rest	E1	$2500x^2 - 560x - 4116 = 0$ Conclusion required, or solving equation to obtain $x = 1.4$
(iii)	WD against resistance is $7560(24+x)$	B1	(=181440+7560x)
	Change in EE is $\frac{1}{2} \times 5000 x^2$	B1	$(=2500x^2)$
	Change in KE is $\frac{1}{2} \times 400 \times 30^2$	B1	(=180000)
	Change in PE is $\frac{1}{400} \times 9.8 \times (24+x) \times \frac{1}{7}$	B1	(=13440+560x)
	OR Speed 7.75 ms ⁻¹ when it hits buffer, then WD against resistance is 7560x B' Change in EE is $\frac{1}{2} \times 5000x^2$ B'		$(=2500x^2)$
	Change in KE is $\frac{1}{2} \times 400 \times 7.75^2$ B'		(=12000)
	Change in PE is $400 \times 9.8 \times x \times \frac{1}{7}$ B'		(=560x)
	$-7560(24+x) = \frac{1}{2} \times 5000x^2 - \frac{1}{2} \times 400 \times 30^2$	M1	Equation involving WD, EE, KE, PE
	$-400 \times 9.8 \times (24 + x) \times \frac{1}{7}$	F1	
	$-7560(24+x) = 2500x^2 - 180000 - 560(24+x)$		
	$-3.024(24+x) = x^{2} - 72 - 0.224(24+x)$ $x^{2} + 2.8x - 4.8 = 0$	M1	
	$-2.8 + \sqrt{2.8^2 + 19.2}$	A1	Simplification to three term
	$x = \frac{1}{2}$	M1	quadratic
	=1.2	A1 10	

61
Mark Scheme

3(a)(i)	[Velocity] = LT^{-1}	B1	Deduct 1 mark for ms ⁻¹ etc
	[Force] = MLT^{-2}	B1	
	[Density] = ML^{-3}	B1	
		3	
(ii)	$MLT^{-2} = (ML^{-3})^{\alpha} (LT^{-1})^{\beta} (L^{2})^{\gamma}$		
	$\alpha = 1$	B1	
	$\beta = 2$	B1	
	$-3\alpha + \beta + 2\gamma = 1$	M1A1	(ft if equation involves
	7 - 1	A1	$\alpha, \beta \text{ and } \gamma$)
		5	
(b)(i)	$\frac{2\pi}{2} = 4.3$	M1	
(0)(1)	ω 2π		
	$\omega = \frac{2\pi}{4.3}$ (=1.4612)	A1	
		M1	Using $\omega^2(\Lambda^2 - \theta^2)$
	$\dot{\theta}^2 = 1.4612^2 (0.08^2 - 0.05^2)$	F1	For RHS
	Angular speed is $0.0913 \text{ rad s}^{-1}$	A1	(b.o.d. for $v = 0.0913 \text{ m s}^{-1}$)
		5	
	OR $\dot{\theta} = 0.08\omega\cos\omega t$ M1		Or $\dot{\theta} = (-) 0.08\omega \sin \omega t$
	$= 0.08 \times 1.4612 \cos 0.6751$ F1		$=(-)0.08 \times 1.4612 \sin 0.8957$
	= 0.0913 A1		
(ii)	$\theta = 0.08 \sin \omega t$	B1	or $\theta = 0.08 \cos \omega t$
	When $\theta = 0.05$, $0.08 \sin \omega t = 0.05$	M1	Using $\theta = (\pm)0.05$ to obtain an
	$\omega t = 0.6751$		equation for t
	t = 0.462	A1 cao	<i>i</i>)
		AT Cau	or $t = 0.613$ from $\theta = 0.08 \cos \omega t$
	Time taken is 2×0.462		or $t = 1.537$ from $\theta = 0.08 \cos \omega t$
		M1	Strategy for finding the required
	0.024		time
	= 0.924 s	A1 cao	(2×0.462 or $\frac{1}{2}$ ×4.3-2×0.613
		5	or 1.537–0.613) Dep on first
			M1
			For $\theta = 0.05 \sin \omega t$, max
			BOM1A0M0
			(for
			$0.05 - 0.05 \sin \omega t$

4 (a)	Area is $\int_{a}^{\ln 3} e^{x} dx = \left[e^{x} \right]^{\ln 3}$	M1	
	$\int x y \mathrm{d}x = \int x \mathrm{e}^x \mathrm{d}x$	M1	
	$= \begin{bmatrix} x e^x - e^x \end{bmatrix}_0^{\ln 3}$	M1	Integration by parts
	$= 3\ln 3 - 2$		FOr $xe^{n} - e^{n}$
	$\overline{x} = \frac{3\ln 3 - 2}{2} = \frac{3}{2}\ln 3 - 1$	A1	ww full marks (B4) Give B3 for
	$\int \frac{1}{2} y^2 dx = \int_0^{113} \frac{1}{2} (e^x)^2 dx$	M1	Exprintegral of $(a^x)^2$
	$= \left\lfloor \frac{1}{4} e^{2x} \right\rfloor_{0}^{ms}$ $= 2$	A1	For $\frac{1}{2}e^{2x}$
	$\overline{y} = \frac{2}{2} = 1$	A1	If area wrong, SC1 for $\overline{x} = \frac{3\ln 3 - 2}{2}$ and $\overline{x} = \frac{2}{2}$
		9	area area area
(b)(i)	Volume is $\int \pi y^2 dx = \int_2^a \pi \frac{36}{x^4} dx$	M1	π may be omitted throughout
	$=\pi \left[-\frac{12}{x^3} \right]_2^a = \pi \left(\frac{3}{2} - \frac{12}{a^3} \right)$	A1	
	$\int \pi x y^2 \mathrm{d}x = \int_2^a \pi \frac{36}{x^3} \mathrm{d}x$	M1	
	$= \pi \left[-\frac{18}{x^2} \right]_2^a = \pi \left(\frac{9}{2} - \frac{18}{a^2} \right)$	A1	
	$\overline{x} = \frac{\int \pi x y^2 \mathrm{d}x}{\int \pi y^2 \mathrm{d}x}$	M1	
	$-\frac{\pi \left(\frac{9}{2} - \frac{18}{a^2}\right)}{3(a^3 - 4a)}$		
	$\pi \left(\frac{3}{2} - \frac{12}{a^3}\right) = a^3 - 8$	E1 6	
(::)	Since $a > 2$, $4a > 8$	M1	Condone \geq instead of $>$
(11)	SO $a^3 - 4a < a^3 - 8$	A1	throughout
	Hence $\overline{x} = \frac{3(a^2 - 4a)}{a^3 - 8} < 3$ i.e. CM is less than 3 units from O	E1 3	Fully acceptable explanation Dependent on M1A1
	$OP Ac = \frac{3(1-4a^{-2})}{2}$		Account = $3a^3$, 2, ato
	OR AS $a \to \infty$, $x = \frac{1}{1 - 8a^{-3}} \to 3$ M1A1		Accept $x \approx \frac{1}{a^3} \rightarrow 3$, etc
	Since x increases as a increases, \overline{x} is less than 3 E1		(M1 for $x \rightarrow 3$ stated, but A1 requires correct justification)

4763 Mechanics 3

1(a) (i)	[Density] = ML^{-3} [Kinetic Energy] = $ML^{2}T^{-2}$	B1 B1	$(Deduct B1 for kg m^{-3} etc)$	
	[Power] = $ML^2 T^{-3}$	B1		
				3
(ii)	$ML^2 T^{-3} = [\eta]L(LT^{-1})^2$	B1	For $[v] = LT^{-1}$ Can be earned in (iii)	
		M1	Obtaining the dimensions of n	
	$[n] - M I^{-1} T^{-1}$			
		711		3
(iii)	$ML^{2}T^{-3} = (ML^{-3})^{\alpha}L^{\beta}(LT^{-1})^{\gamma}$			
	$\alpha = 1$	B1 cao		
	$-3 = -\gamma$	M1	Considering powers of T	
	$\gamma = 3$	A1	(No ft if $\gamma = 0$)	
		M1	Considering powers of L	
	$2 = -3\alpha + \beta + \gamma$	Al	Correct equation (ft requires 4 terms) $(N_0 \notin \mathcal{H}, \mathcal{H}, \mathcal{H}, \mathcal{H})$	
	p = 2	AI	(NOJI IJ P = 0)	6
				0
(b)		M1	Calculating elastic energy	
	EE at start is $\frac{1}{2}k \times 0.8^2$	A1	k may be $\frac{\lambda}{l}$ or $\frac{\lambda}{1.2}$	
	EE at end is $\frac{1}{2}k \times 0.3^2$	A1		
		M 1	Equation involving EE and PE	
	$\frac{1}{2}k \times 0.8^2 = \frac{1}{2}k \times 0.3^2 + 5.5 \times 9.8 \times 3.5$	F1	(must have three terms)	
	Stiffness is 686 N m^{-1}	A1	$(A0 \text{ for } \lambda = 823.2)$	
				6
				[18]

		1		1
2 (a)	$\int \pi x y^2 dx = \int_{a}^{a} \pi x (a^2 - x^2) dx$			
	$\int \frac{dx}{dx} = \int_0^{\infty} \frac{dx}{dx} = \int_0^{\infty} \frac{dx}{dx}$	M1	Limits not required	
	$=\pi\left[\frac{1}{2}a^2x^2-\frac{1}{4}x^4\right]_0^a$	A1	For $\frac{1}{2}a^2x^2 - \frac{1}{4}x^4$	
	$=\frac{1}{4}\pi a^4$	A1		
	$\overline{x} = \frac{\frac{1}{4}\pi a^4}{\frac{2}{3}\pi a^3}$	M1		
	$=\frac{3}{8}a$	E1		5
(b)				5
(i)	Area is $\int_{1}^{4} (2 - \sqrt{x}) dx$	M1	Limits not required	
	$= \left[2x - \frac{2}{3}x^{3/2} \right]_{1}^{4} (=\frac{4}{3})$	A1	For $2x - \frac{2}{3}x^{\frac{3}{2}}$	
	$\int x y \mathrm{d}x = \int_{1}^{4} x(2 - \sqrt{x}) \mathrm{d}x$	M1	Limits not required	
	$= \left[x^2 - \frac{2}{5}x^{\frac{5}{2}} \right]_1^4 (=\frac{13}{5})$	A1	For $x^2 - \frac{2}{5}x^{\frac{5}{2}}$	
	$\overline{x} = \frac{\frac{13}{5}}{\frac{4}{3}} = \frac{39}{20} = 1.95$	A1		
	$\int \frac{1}{2} y^2 \mathrm{d}x = \int_1^4 \frac{1}{2} (2 - \sqrt{x})^2 \mathrm{d}x$	M1	$\int (2-\sqrt{x})^2 dx or \int ((2-y)^2 - 1) y dy$	
	$= \left[2x - \frac{4}{3}x^{3/2} + \frac{1}{4}x^2 \right]_1^4 (=\frac{5}{12})$	A2	For $2x - \frac{4}{3}x^{\frac{3}{2}} + \frac{1}{4}x^2$ or $\frac{3}{2}y^2 - \frac{4}{3}y^3 + \frac{1}{4}y^4$ Give A1 for two terms correct, or all	
	$\overline{y} = \frac{\frac{5}{12}}{\frac{4}{2}} = \frac{5}{16} = 0.3125$	A1	correct with ¹ / ₂ omitted	
	/ 3			9
(ii)	Taking moments about A $T_C \times 3 - W \times 0.95 = 0$	M1 A1	Moments equation (no force omitted) Any correct moments equation (May involve both T_A and T_C) Accept Wg or $W = \frac{4}{3}, \frac{4}{3}g$ here	
	$T_A + T_C = W$	M1	Resolving vertically (or a second moments equation)	
	$T_A = \frac{41}{60}W, T_C = \frac{19}{60}W$	A1	Accept 0.68W, 0.32W	4
				4 [18]

3 (i)	By conservation of energy, $\frac{1}{2} \times 0.6 \times 6^2 - \frac{1}{2} \times 0.6 v^2 = 0.6 \times 9.8(1.25 - 1.25 \cos \theta)$ $36 - v^2 = 24.5 - 24.5 \cos \theta$ $v^2 = 11.5 + 24.5 \cos \theta$	M1 A1 E1	Equation involving KE and PE	3
(ii)	$T - 0.6 \times 9.8 \cos \theta = 0.6 \times \frac{v^2}{1.25}$ $T - 5.88 \cos \theta = 0.48(11.5 + 24.5 \cos \theta)$ $T = 5.52 + 17.64 \cos \theta$	M1 A1 M1 A1	For acceleration $\frac{v^2}{r}$ Substituting for v^2	4
(iii)	String becomes slack when $T = 0$ $\cos \theta = -\frac{5.52}{17.64}$ ($\theta = 108.2^{\circ}$ or 1.889 rad) $v^2 = 11.5 - 24.5 \times \frac{5.52}{17.64}$ Speed is 1.96 ms ⁻¹ (3 sf)	M1 A1 M1 A1 cao	May be implied or $0.6 \times 9.8 \times \frac{5.52}{17.64} = 0.6 \times \frac{v^2}{1.25}$ or $-0.6 \times 9.8 \times \frac{v^2 - 11.5}{24.5} = 0.6 \times \frac{v^2}{1.25}$	4
(iv)	$T_{1} \cos \theta = mg$ $T_{1} \times \frac{1.2}{1.25} = 0.6 \times 9.8$ (where θ is angle COP) Tension in OP is 6.125 N $T_{1} \sin \theta + T_{2} = \frac{mv^{2}}{0.35}$ $6.125 \times \frac{0.35}{1.25} + T_{2} = \frac{0.6 \times 1.4^{2}}{0.35}$ Tension in CP is 1.645 N	M1 A1 A1 M1 F1B1 A1	Resolving vertically Horizontal equation (three terms) For LHS and RHS	7
				[18]

4(i)		M1	Using Hooke's law	
	$T_{\rm AP} = \frac{7.35}{1.5} \times 0.05 (= 0.245)$	A1	or $\frac{7.35}{1.5}$ (AP-1.5)	
	$T_{\rm BP} = \frac{7.35}{2.5} \times 0.5 \ (=1.47)$	A1	or $\frac{7.35}{2.5}(2.05 - AP)$	
	Resultant force up the plane is $T_{\rm BP} - T_{\rm AP} - mg \sin 30^{\circ}$ $= 1.47 - 0.245 - 0.25 \times 9.8 \sin 30^{\circ}$	M1	2.5	
	= 1.47 - 0.245 - 1.225 = 0			
	Hence there is no acceleration	E1	Correctly shown	5
(ii)	$T_{\rm AP} = \frac{7.35}{1.5} (0.05 + x) \qquad (= 0.245 + 4.9x)$	B1		
	$T_{\rm BP} = \frac{7.35}{2.5} (4.55 - 1.55 - x - 2.5)$	M1		
	= 2.94(0.5 - x)	E 1		
	= 1.47 - 2.94x	EI		3
(iii)	$T_{\rm BP} - T_{\rm AP} - mg\sin 30^\circ = m\frac{{\rm d}^2 x}{{\rm d}t^2}$	M1	Equation of motion parallel to plane	
	$(1.47 - 2.94x) - (0.245 + 4.9x) - 1.225 = 0.25 \frac{d^2x}{dt^2}$ $\frac{d^2x}{dt^2} = -31.36x$	A2	Give A1 for an equation which is correct apart from sign errors	
	Hence the motion is simple harmonic	E1	Must state conclusion. Working must be fully correct (cao) <i>If a is used for accn down plane, then</i> a = 31.36x can earn M1A2: but E1	
	Period is $\frac{2\pi}{\sqrt{31.36}} = \frac{2\pi}{5.6}$		requires comment about directions	
	Period is 1.12 s (3 sf)	B1 cao	Accept $\frac{5\pi}{14}$	
(• >		M1		5
(IV)	$x = -0.05 \cos 5.6t$	MI A1	For Asin ωt or A cos ωt Allow $\pm 0.05 \sin/\cos 5.6t$ Implied by $v = \pm 0.28 \sin/\cos 5.6t$	
	$v = 0.28 \sin 5.6t$ -0.2 = 0.28 \sin 5.6t OR 0.2 ² = 31.36(0.05 ² - x ²)	M1	Using $v = \pm 0.2$ to obtain an equation for <i>t</i>	
	$0.035 = -0.05\cos 5.6t \qquad M1$ 5.6t = $\pi + 0.7956$	M1	Fully correct strategy for finding the required time	
	Time is 0.703 s (3 sf)	A1cao	*	5
				[18]

Mathematics (MEI)

Advanced GCE 4763

Mechanics 3

Mark Scheme for June 2010

Mark Scheme

1(a)(i)	AD $\sqrt{24^2 + 0.7^2} = 2.5$	M1	
	$AP = \sqrt{2.4} + 0.7 = 2.5$ Tension $T = 70 \times 0.35 \ (-24.5)$	A1	
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	M1	Attempting to resolve vertically
	Resultant vertical force on P is $2I \cos \theta - mg$	B1	For $T \times \frac{2.4}{2.5}$ (or $T \cos 16.3^{\circ} etc$)
	$=2\times24.5\times\frac{-4.8\times9.8}{2.5}$	B1	For 4.8×9.8
	= 47.04 - 47.04 = 0	F1	Correctly shown
		6	
(ii)	$EE = \frac{1}{2} \times 70 \times 0.35^2$	M1	$(M0 \text{ for } \frac{1}{2} \times 70 \times 0.35)$
	Elastic energy is 4.2875 J	A1 2	Note If 70 is used as modulus instead of stiffness: (i) M1A0M1B1B1E0 (ii) M1 A1 for 1.99
(iii)	Initial KE = $\frac{1}{2} \times 4.8 \times 3.5^2$	B1	
	By conservation of energy	M1	Equation involving EE, KE and PE
	$4.8 \times 9.8h = 2 \times 4.2875 + \frac{1}{2} \times 4.8 \times 3.5^2$	F1	
	47.04h = 8.575 + 29.4		$2 \times (ii) + 29.4$
	Height is 0.807 m (3 sf)	A1 4	(A0 for 0.8) ft is $\frac{2 \times (11) + 29.4}{47.04}$
(b)(i)	[Force] = MLT^{-2}	B1	Deduct 1 mark if units are used
	[Stiffness] = MT^{-2}	B1	
		2	
(ii)	$\mathbf{L} \mathbf{T}^{-1} = \mathbf{M}^{\alpha} (\mathbf{M} \mathbf{T}^{-2})^{\beta} \mathbf{L}^{\gamma}$		
	$\gamma = 1$	B1	
	$\beta = \frac{1}{2}$	B1	
	$0 = \alpha + \beta$	M1	Considering powers of M
	$\alpha = -\frac{1}{2}$	A1	When [Stiffness] is wrong in (i), allow
		4	all marks ft provided the work is comparable and answers are non-zero

2 (i)	$R\cos\theta = mg$ [θ is angle between OB and vertical]	M1	Resolving vertically
	$R \times 0.8 = 0.4 \times 9.8$	A1	
	Normal reaction is 4.9 N	A1 3	
(;;)	2	5	2
(II)	$R\sin\theta = m\frac{v^2}{r}$	M1	For acceleration $\frac{v^2}{r}$ or $r\omega^2$
	$4.9 \times 0.6 = 0.4 \times \frac{v^2}{1.5}$	A1	or $4.9 \times 0.6 = 0.4 \times 1.5 \omega^2$
	$v^2 = 11.025$		_
	Speed is 3.32 m s^{-1} (3 sf)	A1 3	ft is $1.5\sqrt{R}$
(iii)	By conservation of energy	M1	Equation involving KE and PE
	$\frac{1}{2}mu^2 = mg \times 2.5$	A1	
	$u^2 = 5g$ (<i>u</i> = 7)		
	$R - mg = m \times \frac{u^2}{2.5}$	M1	Vertical equation of motion (must have three terms)
	R - mg = 2mg	F 1	Compathy shown
	R = 3mg	EI 4	or $R = 11.76$ and $3 \times 0.4 \times 9.8 = 11.76$
(iv) (v)	$\frac{1}{2}mv^2 = mg \times 2.5\cos\theta$	M1	Mark (iv) and (v) as one part Equation involving KE, PE and an angle (θ is angle with vertical)
	$v^2 = 5g\cos\theta$	Al	$\left[\frac{1}{2}mv^2 = mgh \text{ can earn M1A1, but}\right]$
			only if $\cos \theta = h/2.5$ appears somewhere]
	$R - mg \cos \theta = m \times \frac{v^2}{2.5}$ When $R = 2mg$ (= 7.84).	M1	Equation of motion towards O (must have three terms, and the weight must be resolved)
	$2mg - mg\cos\theta = \frac{mv^2}{2.5}$		
	$2mg - \frac{mv^2}{m} = \frac{mv^2}{m}$	M1	Obtaining an equation for v
	5 2.5	M1	Obtaining an equation for θ
	$v^2 = \frac{98}{3}$		These two marks are each dependent on MIM1 above
	Speed is 5.72 m s^{-1} (3 sf)	A1	
	$\cos\theta = \frac{v^2}{5g} = \frac{2}{3}$ ($\theta = 48.2^\circ$ or 0.841 rad)		
	Tangential acceleration is $g \sin \theta$	M1	[$g \sin \theta$ in isolation only earns M1 if
	Tangential acceleration is 7.30 m s^{-2} (3 sf)	A1 8	the angle θ is clearly indicated]

3 (i)	Volume is $\int_{1}^{5} \pi \left(\frac{1}{x}\right)^{2} dx$	M1	π may be omitted throughout Limits not required
	$=\pi\left[-\frac{1}{x}\right]_{1}^{5} (=\frac{4}{5}\pi)$	A1	For $-\frac{1}{x}$
	$\int \pi x y^2 dx = \int_1^5 \pi x \left(\frac{1}{x}\right)^2 dx$	M1	Limits not required
	$=\pi \left[\ln x \right]_{1}^{5} (=\pi \ln 5)$	A1	For ln <i>x</i>
	$\overline{x} = \frac{\pi \ln 5}{\frac{4}{5}\pi} = \frac{5\ln 5}{4} (2.012)$	A1 5	SR If exact answers are not seen, deduct only the first A1 affected
(ii)	Area is $\int_{1}^{5} \frac{1}{x} dx$	M1	Limits not required
	$= \left[\ln x \right]_{1}^{5} (= \ln 5)$	A1	For ln x
	$\int x y dx = \int_{1}^{5} x \left(\frac{1}{x}\right) dx (= \begin{bmatrix} x \end{bmatrix}_{1}^{5} = 4)$	M1	Limits not required
	$\overline{x} = \frac{4}{\ln 5} \qquad (\ 2.485\)$	A1	
	$\int \frac{1}{2} y^2 dx = \int_1^5 \frac{1}{2} \left(\frac{1}{x}\right)^2 dx$	M1	For $\int \left(\frac{1}{x}\right)^2 dx$
	$= \left[-\frac{1}{2x} \right]_{1}^{5} (=\frac{2}{5})$	A1	For $-\frac{1}{2x}$
	$\overline{y} = \frac{\frac{2}{5}}{\ln 5} = \frac{2}{5\ln 5}$ (0.2485)	A1 7	
(iii)	CM of R_2 is $\left(\frac{2}{5\ln 5}, \frac{4}{\ln 5}\right)$	B1B1 ft 2	<i>Do not penalise inexact answers in this part</i>
(iv)		B1	For CM of R_3 is $(\frac{1}{2}, \frac{1}{2})$
		M1	(one coordinate is sufficient) Using $\sum mx$ with three terms
	$\overline{x} = \frac{(\ln 5) \left(\frac{1}{\ln 5}\right) + (\ln 5) \left(\frac{2}{5\ln 5}\right) + (1) \left(\frac{1}{2}\right)}{\ln 5 + \ln 5 + 1}$	M1	Using $\frac{\sum mx}{\sum m}$ with at least two terms
	CM is $\left(\frac{4.9}{2\ln 5+1}, \frac{4.9}{2\ln 5+1}\right)$ (1.161, 1.161)	A1 cao 4	in each sum

4 (i)	$v = \frac{\mathrm{d}x}{\mathrm{d}t} = A\omega\cos\omega t - B\omega\sin\omega t$	B1	
	$a = \frac{d^2 x}{dt^2} = -A\omega^2 \sin \omega t - B\omega^2 \cos \omega t$	M1	Finding the second derivative
	$= -\omega^2 (A\sin\omega t + B\cos\omega t) = -\omega^2 x$	E1 3	Correctly shown
(ii)	<i>B</i> = -16	B1	
	$\omega = 0.25$	B1	
	<i>A</i> = 30	B2	When A is wrong, give B1 for a correct
		4	equation involving A [e.g. $A\omega = 7.5$ or
			$7.5^2 = \omega^2 (A^2 + B^2 - 16^2)$] or for
			A = -30
(iii)	Maximum displacement is $(\pm) \sqrt{A^2 + B^2}$	M1	Or $7.5^2 = \omega^2 (amp^2 - 16^2)$
			Or finding <i>t</i> when $v = 0$ and
	Maximum displacement is 34 m	A1	substituting to find <i>x</i>
	Maximum speed is (+) 34.0		
	Maximum speed is (\pm) 340	M1	For either (any valid method)
	Maximum acceleration is (\pm) 34 ω		
	Maximum speed is 8.5 m s^{-1}	F1	Only ft from $\omega \times amp$
	Maximum acceleration is 2.125 m s^{-2}	F1	Only ft from $\omega^2 \times amp$
		5	
(iv)	$v = 7.5\cos 0.25t + 4\sin 0.25t$		
	When $t = 15$, $v = 7.5 \cos 3.75 + 4 \sin 3.75$	M1	
	= -8.44		
	Speed is 8.44 m s ^{-1} (3 sf); downwards	A1	
		2	
(v)	Period $\frac{2\pi}{\omega} \approx 25 \text{ s}$,		
	so $t = 0$ to $t = 15$ is less than one period		
	When $t = 15$, $x = 30 \sin 3.75 - 16 \cos 3.75$	M1	
	= -4.02		
	Distance travelled is $16 \pm 34 \pm 34 \pm 4.02$	M1	Take account of change of direction
	Distance travelled is $10 \pm 34 \pm 34 \pm 4.02$		runy contect sualegy for distance
	Distance traveneu is 88.0 m (3 SI)	A1 cao 4	
		-	

Mathematics (MEI)

Advanced GCE

Unit 4763: Mechanics 3

Mark Scheme for January 2011

1(a)(i)	$[\text{Force }] = \text{ML} \text{T}^{-2}$	B1	Deduct one much if given as $\log m e^{-2}$
-(, ()	$\begin{bmatrix} FOICE \end{bmatrix} = ML^{-3}$	- R1	Deduci one mark ij given as kg ins
	[Density] = ML		
	$[Angular speed] = T^{-1}$	BI 3	
(ii)	NU T ⁻²	-	
(11)	[Breaking stress] = $\frac{MLT}{T^2}$	M1	For [Force] $\div L^2$
	$-MI^{-1}T^{-2}$	E1	
		2	
(iii)			1
	$1.2 \times 10^9 \times \frac{1}{2} \times 0.0254 \times 0.001^2$	M1	For $\times 0.001^2$ or $\times \frac{1}{0.001^2}$
	0.454 0.0254 0.001	M1	Eor × 0.0254
	$(7.1.11 \div -1) = -2$ (2.5)	A 1	0.454
	= 67.1 Ib in ms (3 si)	3	5.6×10^{-8} implies M1M1A0
			2.15×10^{16} implies M1M0A0
(iv)	$\mathbf{T}^{-1} = (\mathbf{M} \mathbf{L}^{-1} \mathbf{T}^{-2})^{\alpha} (\mathbf{M} \mathbf{L}^{-3})^{\beta} \mathbf{L}^{\gamma}$		All marks ft provided work is
	$\alpha = \frac{1}{2}$	B1	comparable
	$\beta = -\frac{1}{2}$	B1	
	$0 = -\alpha - 3\beta + \gamma$	M1	Considering powers of L
	$\gamma = -1$	A1	
		4	
(v)	$3140 = k(1.2 \times 10^9)^{\frac{1}{2}}(7800)^{-\frac{1}{2}}(0.5)^{-1}$	N / 1	
	k = 4.00 (3 sf)	M1 M1	Obtaining equation for k Obtaining numerical value for k
	$\omega^2 \rho r^2 = 8120^2 \times 2700 \times 0.2^2$		
	$S = \frac{k^2}{k^2} = \frac{k^2}{4^2}$	M1	Obtaining equation for <i>S</i>
	$= 4.44 \times 10^8$ Pa (3 sf)	A1 cao	
		4	
	OR		
	$S = 1.2 \times 10^9 \times \left(\frac{8120}{3140}\right)^2 \times \frac{2700}{7800} \times \left(\frac{0.2}{0.5}\right)^2 \text{M1M1M1}$		
	$=4.44 \times 10^{8}$ A1		
(vi)	$\omega = 4(630)^{\frac{1}{2}}(70)^{-\frac{1}{2}}(15)^{-1}$		
	= 0.8	M1 A1 cao	Obtaining equation for ω
		2	

		[
2(a)(i)	$T \cos \alpha = m \frac{V^2}{r}$ (α is angle APC)	M1	Equation of motion including $\frac{V^2}{r}$
	$T \times \frac{8.4}{30} = 48 \times \frac{3.5^2}{8.4}$	A1	Or $T \cos 73.7 = \dots$ or $T \sin 16.3 = \dots$
	Tension is 250 N	A1	
	$T\sin\alpha + R = mg$	M1	Resolving vertically (three terms)
	$250 \times 0.96 + R = 48 \times 9.8$		
	Normal reaction is 230.4 N	A1 5	
(ii)	$T\sin\alpha = mg$	M1	Vertical equation with $R = 0$
()	$T \times 0.06 = 48 \times 0.8$	A1	Or $T \sin 73.7 = $ or $T \cos 16.3 =$
	$1 \times 0.90 - 48 \times 9.8$		
	T = 490		
	$T \cos \alpha - m V^2$		
	$r \cos \alpha - m \frac{m}{r}$		
	V^2		
	$490 \times 0.28 = 48 \times \frac{1}{84}$	M1	Obtaining equation for V
	V = 4.9	A1	Allow T=490 obtained in (i) and used
		4	correctly in (ii) for full marks
(b)(i)		M1	Equation involving KE and PE
	$\frac{1}{2}m(v^2 - u^2) - m \times 9.8(2.5 - 2.5\cos\theta)$	A1	
	$2^{m(v)}$ $u^{(v)} = m \times 5.5(2.5 - 2.5 \cos \theta)$	711	
	$v^2 - u^2 = 49(1 - \cos\theta)$		
	$v^2 = u^2 + 49 - 49\cos\theta$	E1	
		3	
(ii)	v^2	M1	Radial equation (three terms)
	$mg\cos\theta - R = m\frac{r}{r}$	A1	_
	$\left(x^{2} + 40 - x^{2}\right)$ $48x^{2}$	2.61	
	$48 \times 9.8 \left \frac{u^2 + 49 - v}{40} \right - R = \frac{48v}{2.5}$	MI	Obtaining equation in <i>R</i> , <i>u</i> , <i>v</i>
	(49) 2.5		
	$9.6u^2 + 470.4 - 9.6v^2 - R = 19.2v^2$		
	$R = 470.4 + 9.6u^2 - 28.8v^2$	A1	
		4	
(iii)	$470.4 \pm 0.6u^2$ 28.8 × 4.15 ² = 0	M1	Substituting $R = 0$ and $v = 4.15$
()	$470.4 \pm 7.00 = 20.0 \times 4.13 = 0$		or other complete method leading to an
			equation for u
	u = 1.63 (3 sf)	A1	(ft requires $0 < \mu < 4.15$)
		2	(1. requires 0 < u < 7.15)

3 (i)	Tension is 180(10-7)	M1	Using $T = k \times \text{extension}$
	= 540 N	A1	
		2	
(ii)	A. 540 T : 200. 0 8	M1	Resolving vertically
	$4 \times 340 = 1 + 200 \times 9.8$ T = 200	AI	
	I = 200		
	Extension is $\frac{1}{80}$ (= 2.5)	M1	
	Natural length is 5.5 m	A1 cao	
(•••		4 D1.6	
(111)		BI II	For $180(3+x)$ or $80(2.5-x)$
	d^2x		missing force)
	$80(2.5-x) + 200 \times 9.8 - 4 \times 180(3+x) = 200 \frac{1}{dt^2}$	AI	
	$200 - 80x + 1960 - 2160 - 720x - 200\frac{d^2x}{d^2x}$		
	dt^2		
	$\frac{\mathrm{d}^2 x}{2} = -4x$	E1	
	dt^2	4	
(iv)	Maximum acceleration is $\omega^2 A$	M1	
	$= 4 \times 2.2 = 8.8 \text{ ms}^{-2}$	A1	Condone –8.8
		2	
(v)	When $x = -1.6$, $v^2 = \omega^2 (A^2 - x^2)$		
	$=4(2.2^2-1.6^2)$	M1	Using $v^2 = \omega^2 (A^2 - x^2)$
			(or other complete method)
			(Allow M1 if $\omega^2 = 2$ or 16 used but M0 if $x = 3.8$ is used)
	Speed is 3.02 m s^{-1} (3 sf)	A1	Condense 3.02
		2	Conuone -5.02
(vi)	$x = 2.2\cos 2t$	B1	Condone $x = -2.2\cos 2t$
	When $t = 5$, $x = -1.846$	M1	Obtaining x when $t = 5$
	Decide 2π 5 5 1 6 5 1		(from $x = A \cos \omega t$ or $x = A \sin \omega t$)
	Period is $\frac{\pi}{\omega} = \pi$, 5 s is $-\approx 1.6 \text{ periods}$		
	Distance travelled is $6 \times 2.2 + (2.2 - 1.846)$	M1	Correct strategy for finding distance
	= 13.6 m (3 sf)	A1 4	
		-	

4 (a)	Volume is $\int \pi y^2 dx = \int_k^{4k} \pi (x^2 - k^2) dx$	M1	For $\int (x^2 - k^2) dx$
	$= \pi \left[\frac{1}{3} x^3 - k^2 x \right]_k^{4k} (= 18\pi k^3)$	A1	For $\frac{1}{3}x^3 - k^2x$
	$\int \pi x y^2 \mathrm{d}x = \int_{k}^{4k} \pi (x^3 - k^2 x) \mathrm{d}x$	M1	For $\int xy^2 dx$
	$=\pi\left[\frac{1}{4}x^{4}-\frac{1}{2}k^{2}x^{2}\right]_{k}^{4k} (=\frac{225\pi k^{4}}{4})$	A1A1	For $\frac{1}{4}x^4$ and $-\frac{1}{2}k^2x^2$
	$\overline{x} = \frac{\frac{225}{4}\pi k^4}{18\pi k^3}$	M1	Dependent on previous M1M1
	$=\frac{25k}{8}=3.125k$	A1 7	
(b)(i)	Area is $\int_{0}^{2a} \frac{x^3}{a^2} dx$	M1	For $\int \frac{x^3}{a^2} dx$
	$= \left[\frac{x^4}{4a^2} \right]_0^{2a} (=4a^2)$	A1	For $\frac{x^4}{4a^2}$
	$\int xy \mathrm{d}x = \int_0^{2a} \frac{x^4}{a^2} \mathrm{d}x$	M1	For $\int xy dx$
	$= \left[\frac{x^{5}}{5a^{2}}\right]_{0}^{2a} (=\frac{32a^{3}}{5})$	A1	For $\frac{x^5}{5a^2}$
	$\overline{x} = \frac{\frac{32}{5}a^3}{4a^2} = \frac{8a}{5} = 1.6a$	A1	
	$\int \frac{1}{2} y^2 \mathrm{d}x = \int_0^{2a} \frac{x^6}{2a^4} \mathrm{d}x$	M1	For $\int y^2 dx$ or $\int (2a - x) y dy$
	$= \left[\frac{x^7}{14a^4} \right]_0^{2a} (= \frac{64a^3}{7})$	A1	For $\frac{x^7}{14a^4}$ or $ay^2 - \frac{3}{7}a^{\frac{2}{3}}y^{\frac{7}{3}}$
	$\overline{y} = \frac{\frac{64}{7}a^3}{4a^2} = \frac{16a}{7}$	A1 8	
(ii)	Centre of mass is vertically below A	M1	May be implied
	$\tan \theta = \frac{2a - \bar{x}}{8a - \bar{y}} = \frac{\frac{2}{5}a}{\frac{40}{7}a} (= 0.07)$	M1	Condone reciprocal
	Angle is 4.00° (3 sf)	A1 3	

Mathematics (MEI)

Advanced GCE

Unit 4763: Mechanics 3

Mark Scheme for June 2011

1 (i)	$\frac{\mathrm{d}x}{\mathrm{d}t} = A\omega\cos\omega t$	B1	
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -A\omega^2 \sin \omega t$	M1	Obtaining second derivative
	$= -\omega^2 (A\sin\omega t) = -\omega^2 x$	E1	
	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 = A^2 \omega^2 \cos^2 \omega t = A^2 \omega^2 (1 - \sin^2 \omega t)$	M1	Using $\cos^2 \omega t = 1 - \sin^2 \omega t$
	$=\omega^2(A^2-A^2\sin^2\omega t)=\omega^2(A^2-x^2)$	E1 5	
(ii)	$1.2^2 = \omega^2 (A^2 - 0.7^2)$	M1	Using $v^2 = \omega^2 (A^2 - x^2)$
	$0.75^2 = \omega^2 (A^2 - 2^2)$	A1	Two correct equations (M0 if $x = 7.3$ used, etc)
	$\frac{A^2 - 0.49}{A^2 - 4} = \frac{1.2^2}{0.75^2}$ $A^2 - 0.49 = 2.56(A^2 - 4)$ $9.75 = 1.56A^2$	M1	Eliminating ω or Eliminating <i>A</i> or Substituting <i>A</i> = 2.5 into both equations
	$A^{2} = 6.25$ Amplitude is 2.5 m $1.44 = \omega^{2}(2.5^{2} - 0.7^{2})$	E1	Correctly shown
	$\omega = 0.5$ Period is $\frac{2\pi}{\omega} = \frac{2\pi}{0.5}$ $= 4\pi = 12.6$ s (3 sf)	M1 A1	Using $\frac{2\pi}{\omega}$
(iii)	Maximum speed is $A\omega = 1.25 \text{ m s}^{-1}$	B1 1	ft only if greater than 1.2
(iv)	Magnitude is $0.5^2 \times 1.6$	M1	
	$= 0.4 \text{ m s}^{-2}$	A1	Accept -0.4
	Direction is upwards	B1 3	B0 for just 'towards centre'
(v)	$x = 2.5 \sin(0.5t)$ When $x = -2$, $t = -1.855$ (or 10.71)	B1	or $x = 2.5 \cos(0.5t)$ or $t = (\pm) 4.996$
	When $x = 1$, $t = 0.823$ (or 13.39)	M1	or $t = (\pm) 2.319$
	Time taken is $0.823 - (-1.855)$	111	Correct strategy for finding time (must use radians)
	= 2.68 s (3 sf)	A1 3	(ft is 1.3388/ <i>\omega</i>)

2(a)(i)			Equation u^2
	$0.6 + 0.2 \times 9.8 = 0.2 \times \frac{u^2}{3.2}$	MI A1	For acceleration $\frac{1}{3.2}$
	Speed is 6.4 m s^{-1}	A1 3	
(ii)	(A) $\frac{1}{2}m(v^2 - u^2) = m \times 9.8(3.2 + 3.2\cos 60^\circ)$	M1 A1	Equation involving KE and PE
	$v^2 = 135.04$ Radial component is $\frac{v^2}{v^2} = 42.2 \text{ ms}^{-2}$	Δ1	$(fr is 29.4 + \frac{u^2}{u^2})$
	Radial component is $\frac{1}{3.2} = 42.2$ ms		3.2
	Tangential component is $g \sin 60^{\circ}$	M1	M1A0 for $g \cos 60^{\circ}$
	$= 8.49 \text{ m s}^{-2}$ (3 sf)	A1 5	M0 for mg sin 60° If radial and tangential components are interchanged, withhold first A1
	$(B) T - mg\cos 60^\circ = ma$	M1	Radial equation (three terms)
			(Allow M1 for $T - mg = ma$) This M1 can be awarded in (A)
	$T - 0.2 \times 9.8 \cos 60^\circ = 0.2 \times 42.2$	A1	ft dependent on M1 for energy in (A)
	Tension is 9.42 N	A1 cao 3	<i>SC</i> If 60° with upward vertical, (<i>A</i>) M1A0A0 M1A1 (8.49) (<i>B</i>) M1A1A1 (3.54)
(b)(i)	$T\cos 36^\circ + 0.75\sin 36^\circ = 0.2 \times 9.8$	M1	Resolving vertically (three terms) Allow sin/cos confusion, but both T and
	Tension is 1.88 N (3 sf)	A1 2	R must be resolved
(ii)	Angular speed $\omega = \frac{2\pi}{1.8}$ (= 3.491)	B1	Or $v = \frac{2\pi r}{1.8}$
	$(2\pi)^2$	M1	Horiz eqn involving $r \omega^2$ or v^2 / r
	$T\sin 36^{\circ} - 0.75\cos 36^{\circ} = 0.2r \left(\frac{2\pi}{1.8}\right)$ $r = 0.204$	A1	Equation for r (or l)
	Length of string is $\frac{r}{\sin 36^{\circ}}$	M1	Dependent on previous M1
	= 0.347 m (3 sf)	A1 cao 5	

3 (i)	Elastic energy is $\frac{1}{2} \times \frac{573.3}{2} \times 0.9^2$		
	Endste energy is $\frac{2}{2}$ 3.9	MI	Allow one error
	= 59.535 J	AI 2	(Allow 60 A0 for 59)
(ii)	Length of string at bottom is $2\sqrt{1.8^2 + 2.4^2}$ (-6)	M1	Finding length of string (or half-string)
	573.3 (-0)	M1	Equation involving EE and PE
	$\frac{1}{2} \times \frac{3.010}{3.9} \times (2.1^2 - 0.9^2) = m \times 9.8 \times 1.8$	B1B1	For change in EE and change in PE
	324.135 - 59.535 = 17.64m		
	Mass is 15 kg	E1	
		5	
(iii)	Length of string is $2\sqrt{1.0^2 + 2.4^2} = 5.2$	M1	Finding tension (via Usehe's low)
	Tension $T = \frac{573.3}{\times 1.3} \times 1.3 \ (=191.1)$	A1	Finding tension (Via Hooke's law)
	3.9		
	$2T\sin\alpha - mg = 2 \times 191.1 \times \frac{1.0}{2.6} - 15 \times 9.8$	M1	Finding vertical component of tension
	=147-147		Give A1 for $T = 191.1$ obtained from resolving vertically
	=0, hence it is in equilibrium	E1	SC If 573.3 is used as stiffness:
		4	(i) M1A0 (ii) M1M1B0B1E0
			(iii) M1A1 (745.29) M1E0
(iv)	$[8\pi^2 h^3] = L^3$, $[8h^3 - ad^2] = L^3$		Condone $(L^3 / L^3 = 0, dimensionless)$
	So $\frac{8\pi^2 h^3}{1}$ is dimensionless	E1	But E0 for $\frac{L^3}{2} = \frac{L^3}{2}$
	$8h^3 - ad^2$	1	$L^3 - L^3 = 0$
(v)		B1	For $[\lambda] = MLT^{-2}$
	$\mathbf{T} = \mathbf{M}^{\alpha} \mathbf{L}^{\beta} (\mathbf{M} \mathbf{L} \mathbf{T}^{-2})^{\gamma}$		
	$\gamma = -\frac{1}{2}$	B1	If χ is wrong but non-zero
	$\alpha + \gamma = 0$, so $\alpha = \frac{1}{2}$	B1	give B1 ft for $\alpha = \beta = -\gamma$
	$\beta + \gamma = 0$, so $\beta = \frac{1}{2}$	B1	
		4	
(vi)	$a = 3.9, \ \lambda = 573.3, \ d = 4.8, \ h = 2.6, \ m = 15$		
	2:3	M1	Using formula with numerical α , β , γ
	Period is $\sqrt{\frac{8\pi^2 h^3}{24\pi^2 m^2}} m^{\frac{1}{2}} a^{\frac{1}{2}} \lambda^{-\frac{1}{2}} = 1.67 \text{ s}$ (3 sf)	A1 cao	(must use the complete formula)
	$\sqrt{8h^2-ad^2}$	2	

4 (i)	Area is $\int_0^3 (x^2 + 5) dx$	M1	For $\int (x^2 + 5) dx$
	$=\left[\frac{1}{3}x^3 + 5x\right]_0^3$ (= 24)	A1	For $\frac{1}{3}x^3 + 5x$
	$\int xy dx = \int_0^3 (x^3 + 5x) dx$	M1	For $\int xy dx$
	$= \left[\frac{1}{4}x^4 + \frac{5}{2}x^2 \right]_0^3 (=\frac{171}{4})$	A1	For $\frac{1}{4}x^4 + \frac{5}{2}x^2$
	$\overline{x} = \frac{42.75}{24} = \frac{57}{32} = 1.78125$	A1	
	$\int \frac{1}{2} y^2 \mathrm{d}x = \int_0^3 \frac{1}{2} (x^4 + 10x^2 + 25) \mathrm{d}x$	M1	For $\int y^2 dx$
	$= \left[\frac{1}{10} x^5 + \frac{5}{3} x^3 + \frac{25}{2} x \right]_0^3 (=106.8)$	A2	For $\frac{1}{10}x^5 + \frac{5}{3}x^3 + \frac{25}{2}x$
	$\overline{y} = \frac{106.8}{24} = \frac{89}{20} = 4.45$	A1 9	Give A1 for two terms correct
(ii)	Volume is $\int \pi x^2 dy = \int_{5}^{14} \pi (y-5) dy$	M1	For $\int (y-5) dy$
	$=\pi \left[\frac{1}{2}y^2 - 5y \right]_5^{14} (=40.5\pi)$	A1	For $\left[\frac{1}{2}y^2 - 5y\right]_5^{14}$
	$\int \pi x^2 y \mathrm{d}y = \int_5^{14} \pi (y^2 - 5y) \mathrm{d}y$	M1	For $\int x^2 y dx$
	$= \pi \left[\frac{1}{3} y^3 - \frac{5}{2} y^2 \right]_5^{14} (= 445.5\pi)$	A1	For $\frac{1}{3}y^3 - \frac{5}{2}y^2$
	$\overline{y} = \frac{445.5\pi}{40.5\pi}$	M1	Dependent on previous M1M1
	=11	A1 6	
(iii)	Volume of whole cylinder is $\pi \times 3^2 \times 14 = 126\pi$		
	$126\pi\times7 = 40.5\pi\times11 + (126\pi - 40.5\pi)\times\overline{y}_A$	M1 A1	Using formula for composite body
	$\overline{y}_A = \frac{126\pi \times 7 - 40.5\pi \times 11}{126\pi - 40.5\pi}$		
	$=\frac{97}{19}=5.105$ (4 sf)	A1 cao 3	

Mark Scheme

June	2012	
------	------	--

G	uesti	ion	Answer	Marks	Guidance	9
1	(iv)		$\mathbf{T} = \mathbf{M}^{\alpha} \mathbf{L}^{\beta} (\mathbf{M} \mathbf{L} \mathbf{T}^{-2})^{\gamma}$			
			$\gamma = -\frac{1}{2}$	B1	CAO	
			$\alpha + \gamma = 0, \beta + \gamma = 0$	M1	Considering powers of M or L	
			$\alpha = \frac{1}{2}, \beta = \frac{1}{2}$	A1A1	FT $\alpha = -\gamma$, $\beta = -\gamma$ (provided non-zero)	
				[4]		
1	(v)		$0.718 - k(8)^{\frac{1}{2}}(0.4)^{\frac{1}{2}}(125)^{-\frac{1}{2}}$	M1	Obtaining equation for k	Or using ratio and powers
			k = 4.4875			
			1 1 _1			$(75)^{\frac{1}{2}}$ $(3)^{\frac{1}{2}}$ $(20)^{-\frac{1}{2}}$
			$t = (4.4875)(75)^{\frac{1}{2}}(3)^{\frac{1}{2}}(20)^{\frac{1}{2}}$	MI	Obtaining expression for new time	$\operatorname{Or} \times \left(\frac{75}{8}\right) \times \left(\frac{5}{0.4}\right) \times \left(\frac{25}{125}\right)$
			New time is 15.1 s (3 sf)	Δ1	CAO	
			New time is 15.1 s (5 si)		No penalty for using $b=1.2$ and $b=9$	
2	(0)	(i)	$P_{000} 10^{\circ} - 200 \times 0.2$ ($P - 2242$)	[3] M1	Descluing vertically	Might also include E
4	(a)	(1)	$K \cos 10 = 800 \times 9.8$ ($K = 8243$)	M1	Horizontal equation of motion	Might also include F
			$R\sin 18^\circ = 800 \times \frac{v^2}{45}$	A1		
			$\tan 18^\circ = \frac{v^2}{45 \times 9.8}$			
			Speed is 12.0 m s^{-1} (3 sf)	A1		
				[4]		
2	(a)	(ii)		M1	Resolving vertically (three terms)	
			$R\cos 18^\circ = F\sin 18^\circ + 800 \times 9.8$	A1		
			2	MI	Horizontal equation (three terms)	
			$R\sin 18^\circ + F\cos 18^\circ = 800 \times \frac{15^2}{45}$	A1		
				M1	Obtaining a value for F or R	Dependent on previous M1M1
			Frictional force is 1380 N (3 sf)	A1		
			Normal reaction is 8690 N (3 st)	AI [7]		

June 2	2012
--------	------

Question		ion	Answer	Marks	Guidanc	е
2	(b)			M1	Equation involving KE and PE	h = 2.1 implies M1
			$\frac{1}{2}m(7^2 - 2.8^2) = mg(a + a\cos\theta)$	A1	Correct equation involving a and θ	(Might use angle with downward vertical or horizontal)
			$a(1+\cos\theta) = 2.1$	M1	Radial equation of motion	Might also involve <i>T</i>
			$mg\cos\theta = m \times \frac{2.8}{a}$ $a\cos\theta = 0.8$	A1	Correct equation involving a and θ	
				M1	Eliminating θ or a	Dependent on previous M1M1
			Length of string is 1.3 m Angle with upward vertical is 52.0° (3 sf)	A1 A1 [7]		A0 for 128° or 38°
3	(i)		$\dot{x} = -A\omega\sin(\omega t - \phi)$	B1		
			$\ddot{x} = -A\omega^2 \cos(\omega t - \phi)$	M1	Obtaining second derivative	Allow one error
			$\ddot{x} = -\omega^2 (x - c)$	E1	Correctly shown	
				[3]		
3	(ii)		<i>c</i> = 10	B1		
			$A = 6$ $\frac{2\pi}{\omega} = 10$	B1 M1	Accept $A = -6$ Using $\frac{2\pi}{\omega}$	Or other complete method for finding ω
			$\omega = \frac{\pi}{5}$	A1	Accept $\omega = -\frac{\pi}{5}$	Allow $\frac{2\pi}{10}$ etc
			$x = 16$ when $t = 3 \implies 3\omega - \phi = 0$	M1	Obtaining simple relationship between ϕ and ω . NB $\phi = 3$ is M0	Or $x = 10 + 6\cos\{\frac{\pi}{5}(t-3)\}$
			$\phi = \frac{3\pi}{5}$	A1	NB other values possible If exact values not seen, give A0A1 for both $\omega = 0.63$ and $\phi = 1.9$	e.g. $\phi = -\frac{7\pi}{5}$, $\phi = \frac{13\pi}{5}$, $x = 10 - 6\cos(\frac{\pi}{5}t - \frac{8\pi}{5})$ etc
				[6]	Max 5/6 if values are not consistent	

⁴⁷⁶³

June	201	2
------	-----	---

(Quest	ion	Answer	Marks	Guidance	
3	(iii)		Maximum speed is $A\omega$	M1	Or e.g. evaluating \dot{x} when $t = 5.5$	
			Maximum speed is $\frac{6\pi}{5}$ or 3.77 ms ⁻¹ (3 sf)	A1	FT is $ A\omega $ (must be positive)	
				[2]		
3	(iv)		When $t = 0$, height is 8.15 m (3 sf)	B1	FT is $c + A\cos\phi$ (provided $4 < x < 16$)	Must use radians
			$v = -\frac{6\pi}{5}\sin(\frac{\pi t}{5} - \frac{3\pi}{5})$	M1	Or $v^2 = \left(\frac{\pi}{5}\right)^2 (6^2 - 1.854^2)$	Allow one error in differentiation
			When $t = 0$, velocity is 3.59 ms^{-1} (3 sf)	A1	FT is $A\omega\sin\phi$ (must be positive)	$(\phi = 3 \text{ gives } x = 4.06, v = 0.532)$
				[3]		
3	(v)		When $t = 0$, $x = 8.146$			
			When $t = 14$, $x = 14.854$	M1	Finding <i>x</i> when $t = 14$	Correct (FT) value, or evidence of substitution, required $(\phi = 3 \text{ gives } x = 15.3)$
				M1	(16-14.854) used	Requires $4 < x(14) < 16$
			(16 - 8.146) + 12 + 12 + (16 - 14.854)	M1	Fully correct strategy	Also requires $4 < x(0) < 16$
			Distance is 33 m	A1	CAO	
				[4]		

4763

Question	Answer	Marks	Guidance		
4 (a)	$A = \int_0^9 (3 - \sqrt{x}) \mathrm{d}x$	M1			
	$= \left[3x - \frac{2}{3}x^{\frac{3}{2}} \right]_{0}^{9} (=9)$	A1	For $3x - \frac{2}{3}x^{\frac{3}{2}}$		
	$A\overline{x} = \int xydx = \int_0^9 x(3-\sqrt{x})dx$	M1	For $\int xy dx$		
	$= \left[\frac{3}{2}x^2 - \frac{2}{5}x^{\frac{5}{2}} \right]_0^9 (= 24.3)$	A1	For $\frac{3}{2}x^2 - \frac{2}{5}x^{\frac{5}{2}}$		
	$\overline{x} = \frac{24.3}{9} = 2.7$	A1			
	$A \overline{y} = \int \frac{1}{2} y^2 dx = \int_0^9 \frac{1}{2} (3 - \sqrt{x})^2 dx$	M1	For $\int \dots y^2 dx$	Or $\int_{(0)}^{(3)} (3-y)^2 y dy$	
		M1	Expanding (three terms) and integrating (allow one error)		
	$= \left[\frac{9}{2}x - 2x^{\frac{3}{2}} + \frac{1}{4}x^2 \right]_0^9 (= 6.75)$	A1	For $\frac{9}{2}x - 2x^{\frac{3}{2}} + \frac{1}{4}x^2$	Or $\frac{9}{2}y^2 - 2y^3 + \frac{1}{4}y^4$	
	$\overline{y} = \frac{6.75}{9} = 0.75$	A1			
	,	[9]			

4763

June	2012
------	------

Q	uesti	ion	Answer	Marks	Guidance		
4	(b)	(i)	$V = \int_2^5 \pi (25 - x^2) \mathrm{d}x$	M1	For $\int \dots (25-x^2) dx$		
			$=\pi \left[25x - \frac{1}{3}x^3 \right]_2^5 (= 36\pi)$	A1	For $25x - \frac{1}{3}x^3$		
			$V \overline{x} = \int \pi x y^2 dx = \int_2^5 \pi x (25 - x^2) dx$	M1	For $\int xy^2 dx$		
			$=\pi \left[\frac{25}{2} x^2 - \frac{1}{4} x^4 \right]_2^5 (=\frac{441\pi}{4})$	A1	For $\frac{25}{2}x^2 - \frac{1}{4}x^4$		
			$\overline{x} = \frac{\frac{441}{4}\pi}{36\pi} = \frac{49}{16} (=3.0625)$	A1	Accept 3.1 from correct working		
				[5]			
4	(b)	(11)	ο x , G 5 25 θ	M1 M1	CG is vertical (may be implied) Using triangle OGC or equivalent	Lenient, if CG drawn. Needs to be quite accurate if CG not drawn	
			$\frac{\sin\theta}{5} = \frac{\sin 25^{\circ}}{\overline{x}}$ $\theta = 43.6^{\circ}$	M1 A1 [4]	Accept art 43° or 44° from correct work FT is $\sin^{-1}\left(\frac{2.113}{\overline{x}}\right)$	Provided 2.113 $< \overline{x} < 5$	

	Quest	ion	Answer	Marks	Guida	nce
1	(a)		$A\omega = 5.1$	B1		
				M1	Using $v^2 = \omega^2 (A^2 - x^2)$	
			$4.5^2 = \omega^2 (A^2 - 6^2)$	A1		
			$4.5^2 = 5.1^2 - 36\omega^2$	M1	Eliminating A or ω	
			$\omega = 0.4$			
			Period $(\frac{2\pi}{\omega})$ is $5\pi = 15.7$ s (3 sf)	A1		Allow 5π
			Amplitude (A) is 12.75 m	A1		
				[6]		
1	(b)	(i)	$[F] = MLT^{-2}$	B1		
			$[G] = \left[\frac{Fd^2}{m_1m_2}\right] = \frac{MLT^{-2}L^2}{M^2}$	M1	Obtaining dimensions of G	
			$= M^{-1} L^3 T^{-2}$	A1		
				[3]		
1	(b)	(ii)	$T^{-1} = (M^{-1} L^3 T^{-2})^{\alpha} M^{\beta} L^{\gamma}$			
			$\alpha = \frac{1}{2}$	B1		
			$-\alpha + \beta = 0$	M1	Considering powers of M	
			$\beta = \frac{1}{2}$	A1		
			$3\alpha + \gamma = 0$	M1	Considering powers of L	
			$\gamma = -\frac{3}{2}$	A1		All marks FT from wrong [G] if
				[5]		(u).

(Quest	ion	Answer	Marks	Guida	nce
1	(b)	(iii)		M1M1	For $\left(\frac{4.86 \times 10^{14}}{2500}\right)^{\pm \frac{1}{2}}$ and $\left(\frac{30000}{50}\right)^{\pm \frac{3}{2}}$	Requires $\beta \neq 0, \ \gamma \neq 0$
			$\omega = 2.0 \times 10^{-6} \times \left(\frac{4.86 \times 10^{14}}{2500}\right)^{\frac{1}{2}} \times \left(\frac{30000}{50}\right)^{-\frac{3}{2}}$	A1	Correct equation for ω	FT if comparable
		OR	$2.0 \times 10^{-6} = k \times G^{\frac{1}{2}} \times 2500^{\frac{1}{2}} \times 50^{-\frac{3}{2}}$		M1 Requires $\beta \neq 0$ or $\gamma \neq 0$	
			$kG^{\frac{1}{2}} = 1.414 \times 10^{-5}$		M1 Requires $\beta \neq 0$ and $\gamma \neq 0$	Condone the use of any value for G (including $G = 1$)
			$\omega = 1.414 \times 10^{-5} \times (4.86 \times 10^{14})^{\frac{1}{2}} \times 30000^{-\frac{3}{2}}$		A1 Correct equation for ω	FT if comparable
			Angular speed is 6.0×10^{-5} rad s ⁻¹	A1	САО	
				[4]		
2	(a)	(i)		M1	Equation involving initial KE, final KE and attempt at PE	
			$\frac{1}{2}mv^2 - \frac{1}{2}m(1.2)^2 = mg(0.8 - 0.8\cos\frac{1}{6}\pi)$	A1		
			$v^2 = 3.5407$			
			Radial component $\left(\frac{v^2}{0.8}\right)$ is 4.43 ms ⁻² (3 sf)	A1		
			$(\pm) mg \sin \frac{1}{6}\pi = ma_T$	M1	Allow M1 for $\cos \frac{1}{6}\pi$ used instead of $\sin \frac{1}{6}\pi$; but M0 for $a_T = mg \sin \frac{1}{6}\pi$	
			Tangential component is $4.9 \mathrm{m s^{-2}}$	A1 [5]	Allow $\frac{1}{2}g$	

	Quest	ion	Answer	Marks	Guida	nce
2	(a)	(ii)	$\frac{1}{2}mv^2 - \frac{1}{2}m(1.2)^2 = mg(0.8 - 0.8\cos\theta)$	M1	Equation involving initial KE, final KE and attempt at PE in general position	θ between OP and upward vertical Allow <i>mgh</i> for PE if <i>h</i> is linked to θ in later work
				M1	Equation involving resolved component of weight and v^2 / r	
			$mg\cos\theta - R = \frac{mv^2}{0.8}$	A1	R may be omitted	
			Leaves surface when $R = 0$	M1	May be implied	e.g. Implied by $mg\cos\theta = \frac{mv^2}{0.8}$
			$v^2 - 1.44 = 2 \times 9.8 \times 0.8(1 - \frac{v^2}{7.84})$	M1	Obtaining equation in v or θ Dependent on previous M1M1M1	$\cos \theta = \frac{107}{147} = 0.728$ $\theta = 0.756$ rad or 43.3°
			Speed is 2.39 ms^{-1}	A1		
				[6]		
2	(b)		$T_{\rm R}\sin\alpha + T_{\rm S}\sin\beta = mg$	M1	Resolving vertically (three terms)	$\alpha = R\hat{Q}C = 53.1^\circ, \ \beta = S\hat{Q}C = 16.3^\circ$
			$0.8T_{\rm R} + 0.28T_{\rm S} = 0.9 \times 9.8 \ (= 8.82)$	A1	Allow sin 53.1°, etc	
			$T_{\rm R}\cos\alpha + T_{\rm S}\cos\beta = m\frac{v^2}{r}$	M1	Horizontal equation of motion	Three terms, and v^2 / r
			$0.6T_{\rm R} + 0.96T_{\rm S} = 0.9 \times \frac{5^2}{2.4} \ (=9.375)$	A1		
				M1	Obtaining $T_{\rm R}$ or $T_{\rm S}$	Dependent on previous M1M1
			Tension in string RQ is 9.737 N	A1		
			Tension in string SQ is 3.68 N	[7]		

	Question		Answer	Marks	Guidance		
3	(i)		Length of each string is 7.8 m	B1			
			$T = \frac{720}{6.4}(7.8 - 6.4)$	M1	Using Hooke's law	Must use extension	
			Tension is 159.25 N	A1			
				[3]			
3	(ii)		$2T\cos\theta = mg$	M1	Resolving vertically	$\theta = \hat{XPM} = 67.4^{\circ}$	
			$2 \times 159.25 \times \frac{5}{13} = m \times 9.8$	A1	FT		
			$m = \frac{122.5}{9.8} = 12.5 \text{ kg}$	E1	Working must lead to 12.5 to 3 sf		
				[3]			
3	(iii)		New length of each string is 7.5 m	M1	Hooka's low with new extension		
					HOOKE'S law with new extension		
			$I = \frac{1}{6.4} (1.5 - 6.4) (= 125.125)$	Al			
			$mg - 2T\cos\theta = ma$ 12.5 × 0.8 × 2×125.125 × 0.28 = 12.5 <i>a</i>	M1	Vertical equation of motion (3 terms) ET for incorrect T		
			$\begin{array}{c} 12.3 \times 7.0 - 2 \times 123.123 \times 0.20 = 12.3u \\ \text{Acceleration is } 4.19 \text{ ms}^{-2} \text{ downwards } (3 \text{ sf}) \end{array}$	A1 A1	Some indication of downwards required		
				[5]	zenne maneurien of domininarias required		
3	(iv)		At maximum speed, acceleration is zero	B1	Mention of zero acceleration	Reference to $v^2 = \omega^2 (A^2 - x^2)$,	
			Acceleration is zero in equinorium position	[1]		SHM, etc, will usually be B0	

	Questi	ion	Answer	Marks	Guidar	nce
3	(v)		Change of PE is $12.5 \times 9.8 \times 3$ (= 367.5)	B1		
			Initial EE is $2 \times \frac{728 \times 0.8^2}{2 \times 6.4}$ (= 72.8)	B1	Allow one string (36.4)	
			Final EE is $2 \times \frac{728 \times 1.4^2}{2 \times 6.4}$ (= 222.95)	B1	Allow one string (111.475)	
				M1	Equation involving KE, PE and EE	
			$\frac{1}{2}(12.5)v^2 - 367.5 + 222.95 = 72.8$	A1	FT from any B0 above All signs must be correct	All terms must be non-zero
			Maximum speed is 5.90 m s^{-1} (3 sf)	A1	CAO	
				[6]		
4	(a)		$V = \int_{0}^{h} \pi (y^{\frac{1}{4}})^{2} \mathrm{d}y$	M1	For $\int \dots (y^{\frac{1}{4}})^2 dy$	
			$=\pi \left[\frac{2}{3} y^{\frac{3}{2}} \right]_{0}^{h} (=\frac{2}{3} \pi h^{\frac{3}{2}})$	A1	For $\frac{2}{3}y^{\frac{3}{2}}$	
			$V \overline{y} = \int \pi x^2 y \mathrm{d}y = \int_0^h \pi y^{\frac{1}{2}} y \mathrm{d}y$	M1	For $\int x^2 y dy$	
			$=\pi \left[\frac{2}{5} y^{\frac{5}{2}} \right]_{0}^{h} (=\frac{2}{5} \pi h^{\frac{5}{2}})$	A1	For $\frac{2}{5}y^{\frac{5}{2}}$	
			$\overline{y} = \frac{\frac{2}{5}\pi h^{\frac{5}{2}}}{\frac{2}{3}\pi h^{\frac{3}{2}}} = \frac{3}{5}h$	A1		
				[5]		

	Quest	ion	Answer	Marks	Guida	nce
4	(b)	(i)	$A = \int_0^4 (x + \sqrt{x}) \mathrm{d}x$	M1	For $\int (x + \sqrt{x}) dx$	
			$= \left[\frac{1}{2}x^2 + \frac{2}{3}x^{\frac{3}{2}} \right]_0^4 (=\frac{40}{3})$	A1	For $\frac{1}{2}x^2 + \frac{2}{3}x^{\frac{3}{2}}$	
			$A\overline{x} = \int xy\mathrm{d}x = \int_0^4 x(x+\sqrt{x})\mathrm{d}x$	M1	For $\int xy dx$	
			$= \left[\frac{1}{3}x^3 + \frac{2}{5}x^{\frac{5}{2}} \right]_0^4 (=\frac{512}{15})$	A1	For $\frac{1}{3}x^3 + \frac{2}{5}x^{\frac{5}{2}}$	
			$\overline{x} = \frac{\frac{512}{15}}{\frac{40}{3}} = \frac{64}{25} = 2.56$	E1		
			$A \overline{y} = \int \frac{1}{2} y^2 dx = \int_0^4 \frac{1}{2} (x + \sqrt{x})^2 dx$	M1	For $\int \dots y^2 dx$	
			$= \left[\frac{1}{6}x^3 + \frac{2}{5}x^{\frac{5}{2}} + \frac{1}{4}x^2 \right]_0^4 (=\frac{412}{15})$	A1A1	For $\frac{1}{6}x^3 + \frac{2}{5}x^{\frac{5}{2}} + \frac{1}{4}x^2$	Give A1 for two correct terms
			$\overline{y} = \frac{\frac{412}{15}}{\frac{40}{3}} = \frac{103}{50} = 2.06$	A1		
				[9]		

	Quest	ion	Answer	Marks	Guida	nce
4	(b)	(ii)	Area of <i>B</i> is $24 - \frac{40}{3} = \frac{32}{3}$			
			$\frac{32}{3}\left(\frac{\overline{x}}{\overline{y}}\right) + \frac{40}{3}\left(\frac{2.56}{2.06}\right) = 24\binom{2}{3}$	M1 M1	CM of composite body Correct strategy	(One coordinate sufficient)
			$\begin{pmatrix} \overline{x} \\ \overline{y} \end{pmatrix} = \begin{pmatrix} 1.3 \\ 4.175 \end{pmatrix}$	A1 A1	CAO FT requires $0 < \overline{y} < 6$	FT is $6.75 - 1.25 \overline{y}_A$ No FT from wrong area
		OR	$\int \frac{1}{4} \left(\sqrt{1+4y} - 1 \right)^2 y dy or \int x (6 - x - \sqrt{x}) dx$			
			or $\int \frac{1}{32} \left(\sqrt{1+4y} - 1 \right)^4 dy$		M1 For any one of these	
			or $\int \frac{1}{2} (6 - x - \sqrt{x}) (6 + x + \sqrt{x}) dx$			
			$\bar{x} = 1.3, \bar{y} = 4.175$		M1 For one successful integration A1A1	
				[4]		

	Questi	ion	Answer	Marks	Guida	nce
1	(a)	(i)	$T\sin\theta = mr\omega^2$	M1	Equation involving $r\omega^2$ or $l\omega^2$	All marks in (a) can be earned anywhere $in(i) \circ r(i)$
			$r = 3.2 \sin \theta$	B1		
			$T\sin\theta = (1.5)(3.2\sin\theta)(2.5)^2$	A1	$T = (1.5)(3.2)(2.5)^2$ with no wrong working earns M1B1A1	
			Tension is 30 N	A1 [4]		
1	(a)	(ii)	$T\cos\theta = mg$	M1	Resolving vertically	
			$30\cos\theta = 1.5 \times 9.8$			
			Angle is 60.7° (3 sf)	A1	or 1.06 rad	
1	(h)	(i)				
			$[k] = (MLT^{-2})L^{-1} = MT^{-2}$	E1	Can use $u = \sqrt{\frac{4kd^2}{3m}}$ or $k = \frac{\lambda}{l}$	
				[1]		
1	(b)	(ii)	$\left[\sqrt{\frac{4kd^2}{3m}}\right] = \left(\frac{MT^{-2}L^2}{M}\right)^{\frac{1}{2}} = LT^{-1}$	M1	Obtaining dimensions of RHS	
			$\begin{bmatrix} u \end{bmatrix} = LT^{-1}$, so eqn is dimensionally consistent	E1	Condone circular argument	
				[2]		
1	(b)	(iii)	$\mathbf{T} = (\mathbf{M} \mathbf{T}^{-2})^{\alpha} \mathbf{L}^{\beta} \mathbf{M}^{\gamma}$			
			$\alpha = -\frac{1}{2}$	B1		
			$\beta = 0$	B1		
			$\alpha + \gamma = 0$	M1	Considering powers of M	
			$\gamma = \frac{1}{2}$	A1	FT from wrong non-zero α	
			/ 2	[4]		

Question		ion	Answer	Marks	Guidance	
1	(b)	(iv)	$u = \sqrt{\frac{4 \times 60 \times 0.7^2}{3 \times 5}} = 2.8 \text{ ms}^{-1}$	B1		
			Elastic energy is $\frac{1}{2} \times 60 \times 0.7^2$ (=14.7)	M1A1	M1A0 if one error	
			$\frac{1}{2}(5)(2.8)^2 - \frac{1}{2}(5)v^2 = 14.7$	M1	Equation involving initial KE, final KE and EE	
			Speed is 1.4 ms^{-1}	A1		No FT in any part of Q1 except (iii)
				[5]		
2	(i)			M1	Equation involving initial KE, final KE and PE	
			$\frac{1}{2}m(8.4)^2 - \frac{1}{2}mv^2 = mg(a - a\cos\theta)$	A1		(<i>m</i> = 0.25)
			$v^2 = 70.56 - 19.6a(1 - \cos\theta)$	A1		
				M1	Using acceleration $\frac{v^2}{a}$	
			$T - mg\cos\theta = m\frac{v^2}{a}$	A1		
			$T - 2.45\cos\theta = 0.25(\frac{70.56}{a} - 19.6 + 19.6\cos\theta)$	M1	Equation relating <i>T</i> , <i>a</i> , θ	Dependent on previous M1M1
			$T - 2.45\cos\theta = \frac{17.64}{a} - 4.9 + 4.9\cos\theta$			
			$T = \frac{17.64}{a} + 7.35\cos\theta - 4.9$	E1		
				[7]		
2	(ii)		If $a = 0.9$, $T = 14.7 + 7.35 \cos \theta$	M1	Expression for T when $a = 0.9$	In terms of θ or when $\theta = \pi$
			$T > 0$ for all θ , so P moves in a complete circle	E1	Any correct explanation	
				M1	Using $\theta = 0$ or $\theta = \pi$	
			Maximum tension is $14.7 + 7.35 = 22.05$ N Minimum tension is $14.7 - 7.35 = 7.35$ N	A1	Both correct	
				[4]		

Question		ion	Answer	Marks	Guidance	
2	(iii)		If P just completes the circle, $T = 0$ when $\theta = \pi$	M1		
			$\frac{17.64}{a} - 7.35 - 4.9 = 0$	A1		
			<i>a</i> = 1.44	A1 [3]	For 1.44	Condone $a < 1.44$ etc
2	(iv)		If $a = 1.6$, $T = 6.125 + 7.35\cos\theta$	M1	Using expression for <i>T</i> when $a = 1.6$	
			String becomes slack when $T = 0$	M1		
			$\cos\theta = -\frac{6.125}{7.35} = -\frac{5}{6} \ [\theta = 2.56 \text{ rad or } 146^\circ]$			
			$v^2 = 70.56 - 19.6 \times 1.6(1 + \frac{5}{6})$	M1	Obtaining an equation for <i>v</i>	Dependent on previous M1M1
					Or $-mg(-\frac{5}{6}) = m\frac{v^2}{1.6}$	
			Speed is $3.61 \mathrm{m s}^{-1}$ (3 sf)	A1		No FT in any part of Q2
				[4]		
3	(i)		$\frac{686(2.2-l)}{l} = 18 \times 9.8$	M1	Using Hooke's law	
			Natural length is 1.75 m	A1 [2]		
3	(ii)		Tension in AP is $\frac{686}{1.75}(0.45 + x)$	M1		
			=176.4 + 392x	E1		
			Thrust in BP is $\frac{145}{2.5}x$ (= 58x)	B1	Allow $-58x$	Condone thrust / tension confusion
				[3]		
4763

June 2013

Question		on	Answer	Marks	Guidance	
3	(iii)			M1	Equation of motion	2 forces from (ii), mg and ma
			$18 \times 9.8 - (176.4 + 392x) - 58x = 18\frac{d^2x}{dt^2}$	A1	Correct LHS equated to $\pm 18a$	No FT
			$176.4 - 176.4 - 450x = 18\frac{d^2x}{dt^2}$			
			$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -25x$	E1	Fully correct derivation	
				[3]		
3	(iv)		Period is $\frac{2\pi}{5} = 1.26 \text{s}$ (3 sf)	B1	Allow $\frac{2\pi}{5}$	
			$A\omega = 3.4$	M1		
			Amplitude $(A = \frac{3.4}{5})$ is 0.68 m	A1		
				[3]		
3	(v)		$v = 3.4\cos 5t$	M1	Using $\cos \omega t$ or $\sin \omega t$	$\cos\frac{2}{5}\pi t$ is M0
			When $t = 2.4$, $v = 2.87$			
			Magnitude of velocity is 2.87 m s^{-1} (3 sf)	A1		
			Since $v > 0$ the direction is downwards	A1 [3]	Dependent on MIA1	'Downwards' is sufficient
		OR	When $t = 2.4$, $x = -0.3649$			Earns B1M1 from (vi)
			$v^2 = 25(0.68^2 - 0.3649^2)$		M1 Using $v^2 = \omega^2 (A^2 - x^2)$	
			Magnitude of velocity is 2.87 m s^{-1} (3 sf)		A1	No FT
			Between 1 ³ / ₄ and 2 periods; hence downwards		A1 Dependent on M1A1	Must be justified
3	(vi)		$x = 0.68 \sin 5t$	B1	FT (from wrong amplitude)	
			When $t = 2.4$, $x = -0.3649$	M1		B1M1 can be earned in (v)
			2.4 s is $\frac{2.4}{1.26} = 1.91$ periods (between 1 ³ / ₄ and 2)			
			Distance is $8 \times 0.68 - 0.3649$	M1	$8A + x_{t=2.4}$ with $x_{t=2.4} < 0$	Strictly, only for this
			Distance is 5.08 m (3 sf)	A1 [4]	FT is 7.463A	

June	2013	
------	------	--

Question		ion	Answer	Marks	Guidance	
4	(a)	(i)	$V = \int_{0}^{4} \pi x^{2} (4 - x) \mathrm{d}x$	M1	For $\int \left(x\sqrt{4-x}\right)^2 dx$	π may be omitted throughout
			$=\pi \left[\frac{4}{3}x^3 - \frac{1}{4}x^4 \right]_0^4 (=\frac{64\pi}{3})$	A1	For $\frac{4}{3}x^3 - \frac{1}{4}x^4$	
			$V\overline{x} = \int \pi x y^2 dx = \int_0^4 \pi x^3 (4-x) dx$	M1	For $\int xy^2 dx$	
			$=\pi \left[x^{4} - \frac{1}{5} x^{5} \right]_{0}^{4} (=51.2\pi)$	A1	For $x^4 - \frac{1}{5}x^5$	
			$\overline{x} = \frac{51.2\pi}{\frac{64}{3}\pi}$	M1	Dependent on previous M1M1	
			= 2.4	A1 [6]		
4	(a)	(ii)		M1	Taking moments	
			$W(2.4\sin\theta) = W(4\cos\theta)$	A1	FT Correct equation for required angle	$W(2.4\cos\phi) = W(4\sin\phi) \text{ is A0 unless}$ $\theta = 90^{\circ} - \phi \text{ also appears}$
			$\tan\theta = \frac{4}{2.4} = \frac{5}{3}$			
			$\theta = 59.0^{\circ}$ (3 sf)	A1	FT is $\tan^{-1}\frac{4}{r}$	FT requires $\overline{x} < 4$
				[3]	~	

4763

June 2013

Question		ion	Answer	Marks	Guidance	
4	(b)		$x = 2 + y^{\frac{1}{3}}$	B 1		
			$A = \int_0^8 (2 + y^{\frac{1}{3}}) dy = \left[2y + \frac{3}{4}y^{\frac{4}{3}} \right]_0^8 (= 28)$	B1	FT	Or $32 - \left[\frac{1}{4}(x-2)^4\right]_2^4$
			$A\overline{x} = \int \frac{1}{2} x^2 \mathrm{d}y = \int_0^8 \frac{1}{2} \left(4 + 4y^{\frac{1}{3}} + y^{\frac{2}{3}} \right) \mathrm{d}y$	M1	For $\int x^2 dy$	Or $32 \times 2 - \int_2^4 xy dx$
			$= \left[2y + \frac{3}{2}y^{\frac{4}{3}} + \frac{3}{10}y^{\frac{5}{3}} \right]_{0}^{8} (=49.6)$	B2	FT for $2y + \frac{3}{2}y^{\frac{4}{3}} + \frac{3}{10}y^{\frac{5}{3}}$	Or $\frac{1}{5}(x-2)^5 + \frac{1}{2}(x-2)^4$
					Give B1 for one minor slip in integration, or if $\frac{1}{2}$ omitted	Or $\frac{1}{4}x(x-2)^4 - \frac{1}{20}(x-2)^5$
						Or $\frac{1}{5}x^5 - \frac{3}{2}x^4 + 4x^3 - 4x^2$
			$\overline{x} = \frac{49.6}{28} = \frac{62}{35} = 1.77$ (3 sf)	A1	САО	Must be \overline{x}
			$A\overline{y} = \int xy \mathrm{d}y = \int_0^8 \left(2y + y^{\frac{4}{3}}\right) \mathrm{d}y$	M 1	For $\int xy dy$	Or $32 \times 4 - \int_{2}^{4} (\frac{1}{2}) y^2 dx$
			$= \left[y^2 + \frac{3}{7} y^{\frac{7}{3}} \right]_0^8 (=\frac{832}{7})$	A1	FT for $y^2 + \frac{3}{7}y^{\frac{7}{3}}$	Or B2 for $\frac{1}{14}(x-2)^7$ Give B1 for one minor slip in integration, or if ½ omitted
			$\overline{y} = \frac{\frac{832}{7}}{28} = \frac{208}{49} = 4.24$ (3 sf)	A1	САО	Must be \overline{y}
				[9]		
		OR	Region under curve has CM $(3.6, \frac{16}{7})$		B2B2	For integrals, as above
			$28\overline{x} + 4 \times 3.6 = 32 \times 2$		B1 (for 28) M1	
			$\overline{x} = 1.77$		A1	
			$28\overline{y} + 4 \times \frac{16}{7} = 32 \times 4$		M1	
			$\overline{y} = 4.24$		A1	